Skip to main content

Advertisement

Log in

Soil and groundwater cleanup: benefits and limits of emerging technologies

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Contaminated soil and groundwater have been the subject of study and research, so that the field of remediation has grown and evolved, continually developing and adopting new technologies in attempts to improve the decontamination. The cleanup of environmental pollution involves a variety of techniques, ranging from simple biological processes to advanced engineering technologies. Cleanup activities may also address a wide range of contaminants. This article is a short analysis of the technologies for cleaning up groundwater and soil, highlighting knowledge and information gaps. Challenges and strategies for cleaning up different types of contaminants, mainly heavy metals and persistent organic compounds are described. Included are technologies that treat ground water contaminants in place in the subsurface and soil technologies that treat the soil either in place or on site in a treatment unit. Emerging technologies such as those based on oxidation–reduction, bioremediation, and nanotechnologies are covered. It is evident that for a good efficiency of remediation, techniques or even whole new technologies may be incorporated into an existing technology as a treatment train, improving its performance or overcome limitations. Several economic and decision-making elements are developed in the final part, based on the analysis carried out throughout the article. The work highlights the fact that excellence in research and technology progress could be attained by the development of technologies to deal more effectively and economically with certain toxic contaminants such as heavy metals, volatile organic compounds, and persistent organic pollutants, associated with optimization of technologies under field remediation conditions and requirements, improving capacity and yields, and reducing costs. Moreover, increasing knowledge of the scope and problem of equipment development could improve the benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acar YB, Galeb RJ, Alshawabkeh AN, Marks RE, Puppala W, Brickad M, Parkere R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40:117–137

    CAS  Google Scholar 

  • Ahalya N, Ramachandra TV, Kanamadi RD (2003) Biosorption of heavy metals. Res J Chem Environ 74(4). http://wgbis.ces.iisc.ernet.in/energy/water/paper/biosorption/biosorption.htm. Accessed 25 February 2010

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    CAS  Google Scholar 

  • Alshawabkeh AN (2001) Basics and applications of electrokinetic remediation. Northeastern University, Boston. http://www1.coe.neu.edu/~aalsha/shortcourse.pdf. Accessed 25 February 2010

  • Alshawabkeh AN (2009) Electrokinetic soil remediation: challenges and opportunities. Sep Sci Technol 44:2171–2187

    CAS  Google Scholar 

  • Arunakumara KKIU, Zhang X (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J Ocean Univ China 7:60–64

    CAS  Google Scholar 

  • Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24:129–136

    CAS  Google Scholar 

  • Barner HE, Huang CY, Johnson T, Jacobs G, Martch MA, Killilea WR (1992) Supercritical water oxidation: an emerging technology. J Hazard Mater 31:1–17

    CAS  Google Scholar 

  • Basa SP, Usha Rani A (2003) Cadmium induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol Environ Saf 56:218–221

    Google Scholar 

  • Bautista P, Mohedano AF, Gilarranza MA, Casasa JA, Rodrigue JJ (2007) Application of Fenton oxidation to cosmetic wastewaters treatment. J Hazard Mater 143:128–134

    CAS  Google Scholar 

  • Beltran FJ (2003) Ozone-UV radiation—hydrogen peroxide oxidation technologies. In: Tarr M (ed) Chemical degradation methods for wastes and pollutants: environmental and industrial applications. CRC Press, Boca Raton, pp 1–76

    Google Scholar 

  • Betianu C, Caliman AF, Gavrilescu M, Cretescu I, Cojocaru C, Poulios I (2008) Response surface methodology applied for Orange II photocatalytic degradation in TiO2 aqueous suspensions. J Chem Technol Biotechnol 83:1454–1465

    CAS  Google Scholar 

  • Bishop PL (2002) Pollution prevention: fundamentals and practice. Tsinghua University Press, Beijing

    Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Van Cappellen PV, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23

    CAS  Google Scholar 

  • Boulding R, Ginn JS (2004) Practical handbook of soil, vadose zone, and ground-water contamination: assessment, prevention, and remediation. CRC Press, Boca Raton

    Google Scholar 

  • Boussahel R, Harik D, Mammara D, Lamara-Mohamed S (2007) Degradation of obsolete DDT by Fenton oxidation with zero-valent iron. Desalination 206:369–372

    CAS  Google Scholar 

  • Brinza L, Dring M, Gavrilescu M (2005) Biosorption of Cu2+ ions from aqueous solution by Enteromorpha sp. Environ Eng Manag J 4:41–50

    Google Scholar 

  • Brinza L, Nygård CA, Dring MJ, Gavrilescu M, Benning LG (2009) Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea. Bioresour Technol 100:1727–1733

    CAS  Google Scholar 

  • Caliman A, Gavrilescu M (2009) Personal care compounds, pharmaceuticals and endocrine disrupting agents in the environment—a review. CLEAN Soil Air Water 34:277–303

    Google Scholar 

  • Caliman FA, Curteanu S, Betianu C, Gavrilescu M, Poulios I (2008) Neural networks and genetic algorithms optimization of the photocatalytic degradation of Alcian Blue 8GX. J Adv Oxid Technol 11:316–326

    CAS  Google Scholar 

  • Chaney RL, Malik M, Lia YM, Brown SL, Brewer EP, Scott Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    CAS  Google Scholar 

  • Chang P, Kim K-W, Yoshida S, Kim S-Y (2005) Uranium accumulation of crop plants enhanced by citric acid. Environ Geochem Health 27:529–538

    CAS  Google Scholar 

  • Charbeneau RJ, Bedient PB, Loehr RC (1992) Groundwater remediation. CRC Press, Boca Raton

    Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299–307

    CAS  Google Scholar 

  • Cocero MJ, Alonso E, Sanz MT, Fdz-Polanco F (2002) Supercritical water oxidation process under energetically self-sufficient operation. J Supercrit Fluids 24:37–46

    CAS  Google Scholar 

  • Crawford R, Hess TF, Paszczynski A (2004) Combined biological and abiological degradation of xenobiotic compounds. In: Singh A, Ward OP (eds) Soil biology, vol 2: Biodegradation and bioremediation. Springer, Berlin, pp 251–278

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    CAS  Google Scholar 

  • Dogan CE, Turhan K, Akcin G, Aslan A (2006) Biosorption of Au(III) and Cu (II) from aqueous solution by a non-living Cetraria Islandica (L.) Ach. Ann Chim 96:229–236

    Google Scholar 

  • Dott W, Feidieker D, Steiof M, Petra M, Becker PM, Kämpfer P (1995) Comparison of ex situ and in situ techniques for bioremediation of hydrocarbon-polluted soils. Int Biodeterior Biodegrad 35:301–316

    CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:142–152

    Google Scholar 

  • Duquène L, Vandenhove H, Tack F, van der Avoort E, Wannijn J, van Hees M (2006) Phytoavailability of uranium: influence of plant species and soil characteristics. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Mining impact and consequences. Springer, Berlin, pp 469–476

    Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine. Environ Sci Technol 33:469–475

    CAS  Google Scholar 

  • EEA (2007) Progress in management of contaminated sites, CSI 015—assessment published Aug 2007. European Environment Agency. http://themes.eea.europa.eu/IMS/IMS/ISpecs/ISpecification20041007131746/IAssessment1152619898983/view_content

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    CAS  Google Scholar 

  • Elliott D, Zhang W (2001) Field assessment of nanoparticles for groundwater treatment. Environ Sci Technol 35:4922–4926

    CAS  Google Scholar 

  • Esplugas S, Bilab DM, Krausec LGT, Dezottic M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642

    CAS  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater. Technology evaluation report. Ground-Water Remediation Technologies Analysis Center, Carnegie Mellon University, Pittsburgh

  • Eyvazi MJ, Zytner RG (2009) A correlation to estimate the bioventing degradation rate constant. Bioremediat J 13:141–153

    CAS  Google Scholar 

  • Gavaskar A, Tatar L, Condit W (2005) Cost and performance report: nanoscale zerovalent iron technologies for source remediation. Contract report CR-05-007-ENV, Naval Facilities Engineering Service Center, Port Hueneme. http://www.clu-in.org/download/remed/cr-05-007-env.pdf

  • Gavrilescu M (2004) Removal of heavy metals from environment by biosorption. Eng Life Sci 4:219–232

    CAS  Google Scholar 

  • Gavrilescu M (2005) Fate of pesticides in the environment and its remediation. Eng Life Sci 5:497–526

    CAS  Google Scholar 

  • Gavrilescu M (2006) Overview of in situ remediation technologies for sites and groundwater. Environ Eng Manag J 5:79–114

    Google Scholar 

  • Gavrilescu M (2008) Risk assessment and management. EcoZone Press, Iasi, Romania

  • Gavrilescu M (2009) Emerging processes for soil and groundwater cleanup - potential benefits and risks. Environ Eng Manag J 8(5):1293–1307

    Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23(7–8):471–499

    Google Scholar 

  • Gavrilescu M, Pavel V, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    CAS  Google Scholar 

  • Grittini C, Malcomson M, Fernando Q, Korte N (1995) Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ Sci Technol 29:2898–2900

    CAS  Google Scholar 

  • Hansen HK, Ottosen LM, Hansen L, Kliem BK, Villumsen A, Bech-Nielsen G (1999) Electrodialytic remediation of soil polluted with heavy metals: key parameters for optimization of the process. Chem Eng Res Des 77:218–222

    CAS  Google Scholar 

  • Hardisty PE, Özdemiroglu E (2005) The economics of groundwater remediation and protection. CRC Press, Boca Raton

    Google Scholar 

  • Harrison RM (2001) Pollution. Causes, effects and control. Royal Society of Chemistry, London

    Google Scholar 

  • Hlihor RM, Gavrilescu M (2009) Removal of some environmentally relevant heavy metals using low-cost natural sorbents. Environ Eng Manag J 8:353–372

    CAS  Google Scholar 

  • Horst JF, Lenzo F, Liles D, Vance D, Martin J (2004) Nano-scale ZVI-enhanced reductive dechlorination of PCE DNAPL in fracture bedrock. The fourth international conference on remediation of chlorinated and recalcitrant compounds. Batelle, May

    Google Scholar 

  • Hyman M, Dupont RR (2001) Groundwater and soil remediation. ASCE Publications, Reston

    Google Scholar 

  • ITRC (1997) Emerging technologies for the remediation of metals in soils. Electrokinetic remediation. Interstate Technology and Regulatory Council, USA. http://www.itrcweb.org/Documents/MIS-4.pdf. Accessed 25 February 2010

  • ITRC (2002) A systematic approach to in situ bioremediation in groundwater including decision trees on in situ bioremediation for nitrates, carbon tetrachloride, and perchlorate. Interstate Technology and Regulatory Council, USA. http://www.itrcweb.org/Documents/ISB-8.pdf. Accessed 25 February 2010

  • Jayaweera I (2003) Supercritical water oxidation technology. In: Tarr MA (ed) Chemical degradation methods for wastes and pollutants. Environmental and industrial applications. Marcel Dekker, New York, pp 121–163

  • Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere 70:1492–1499

    CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi T (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Google Scholar 

  • Kim S-S, Han S-J, Cho Y-S (2002) Electrokinetic remediation strategy considering ground strata: a review. Geosci J 6:57–75

    Google Scholar 

  • Konstantinou IK, Albanis TA (2003) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14

    Google Scholar 

  • Kornilovich B, Mishchuk N, Abbruzzese K, Pshinko G, Klishchenko R (2005) Enhanced electrokinetic remediation of metals-contaminated clay. Colloids Surf A 265:114–123

    CAS  Google Scholar 

  • Kovalock WW Jr (2000) Technologies for clean-up of contaminated soils and groundwater in the United States: current practices and information resources. International Symposium on Waste Management in Asian Cities, Hong Kong, October

  • Kyeong-Hee K, Soon-Oh K, Chang-Woo L, Myung-Ho L, Kyoung-Woong K (2003) Electrokinetic processing for the removal of radionuclides in soils. Sep Sci Technol 38:2137–2163

    Google Scholar 

  • Lambert JM, Yang T, Thomson NR, Barker JF (2009) Pulsed biosparging of a residual fuel source emplaced at CFB Borden. Int J Soil Sediment Water 2(3). http://scholarworks.umass.edu/intljssw/vol2/iss3/6/. Accessed 25 February 2010

  • Lehr J, Hyman M, Gass TE, Seevers WJ (2001) Handbook of complex environmental remediation problems. McGraw-Hill, New York

    Google Scholar 

  • Lemming G, Hauschild MZ, Bjerg PL (2010) Life cycle assessment of soil and groundwater remediation technologies: literature review. Int J Life Cycle Assess 15:115–127

    CAS  Google Scholar 

  • Li L (2008) Remediation treatment technologies. Reference guide for developing countries facing persistent organic pollutants. University of British Columbia, Vancouver

    Google Scholar 

  • Lindgren ER, Brady PV (1997) In situ removal of contamination from soil. US Patent No. 5676819

  • Lister KH (2004) Evaluation of remediation alternatives. In: Surammpalli RY (ed) Proceedings of the ASCE national conference on environmental and pipeline engineering 2000, July 23–26, 2000 in Kansas City, Missouri, pp 259–268. http://dx.doi.org/10.1061/40507(282)29

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    CAS  Google Scholar 

  • Magalhãesa SMC, Ferreira Jorgea RM, Castro PML (2009) Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes—a transition regime between bioventing and soil vapour extraction. J Hazard Mater 170:711–715

    Google Scholar 

  • Maharia RS, Dutta RK, Acharya R, Reddy AVR (2010) Heavy metal bioaccumulation in selected medicinal plants collected from Khetri copper mines and comparison with those collected from fertile soil in Haridwar, India. J Environ Sci Health B 45:174–181

    CAS  Google Scholar 

  • Masciangioli T, Zhang W-X (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37:102A–108A

    CAS  Google Scholar 

  • Means JL, Hinchee RE (1994) Emerging technology for bioremediation of metals, vol 2. CRC Press, Boca Raton

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Nichols RL (2008) Sustainable solutions for soil and groundwater remediation helping the Earth help itself. General meeting of the Federal Remediation Technologies, Roundtable, Arlington. http://www.frtr.gov/pdf/meetings/dec08/RalphNichols-presentation.pdf. Accessed 25 February 2010

  • NRC (1994) Alternatives for ground water cleanup. National Academy Press, Washington, DC

  • NRC (1997) Innovations in ground water and soil cleanup. National Academy Press, Washington, DC

  • NRC (1999) Groundwater and soil cleanup: improving management of persistent contaminants. National Academy Press, Washington, DC

    Google Scholar 

  • Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-Au bimetallic nanoparticles for trichloroethene hydrodechlorination. Environ Sci Technol 39:1346–1353

    CAS  Google Scholar 

  • Nyer EK (1992) Practical techniques for groundwater and soil remediation. Kluwer Lewis Publishers/CRC Press, Boca Raton

    Google Scholar 

  • Page MM, Page CL (2002) Electroremediation of contaminated soils. J Environ Eng 128:208–219

    CAS  Google Scholar 

  • Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124:94–102

    CAS  Google Scholar 

  • Pavel LV, Gavrilescu M (2008) Overview of ex-situ decontamination techniques for soil cleanup. Environ Eng Manag J 7:815–834

    Google Scholar 

  • Pavel VL, Bulgariu D, Bulgariu L, Hlihor RM, Gavrilescu M (2009) Studies on sorption and transport processes of cadmium in soils. Environ Eng Manag J 8:1315–1320

    CAS  Google Scholar 

  • Pavel VL, Bulgariu D, Bulgariu L, Hlihor RM, Gavrilescu M (2010) Analysis of factors determining the behaviour of chromium in some Romanian soils. Environ Eng Manag J 9:89–94

    CAS  Google Scholar 

  • Pérez Silva RM, Ábalos Rodríguez A, Montes De Oca JMG, Cantero Moreno D (2009) Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol 100:1533–1538

    Google Scholar 

  • Peternel IT, Koprivanac N, Lončarić Božića AM, Kušića HM (2007) Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. J Hazard Mater 148:477–484

    CAS  Google Scholar 

  • Pichat P (2003) Photocatalytic degradation of pollutants in water and air: basic concepts and applications. In: Tarr M (ed) Chemical degradation methods for wastes and pollutants: environmental and industrial applications. CRC Press, Boca Raton, pp 77–120

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    CAS  Google Scholar 

  • Quinn J, Geiger C, Clausen C, Brooks K, Yoon S, O’Hara S, Krug T, Major D, Yoon W-S, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39:1309–1318

    CAS  Google Scholar 

  • Quinn J, Elliott D, O’Hara S, Billow A (2007) Use of nanoscale iron and bimetallic particles for environmental remediation: a review of field-scale applications. In: Geiger CL, Carvalho-Knighton KM (eds) Environmental applications of nanoscale and microscale reactive metal particles, vol 1027. American Chemical Society, Washington, DC, pp 263–283

    Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    CAS  Google Scholar 

  • Raize O, Argaman Y, Yannai S (2004) Mechanisms of biosorption of different heavy metals by brown marine macroalgae. Biotechnol Bioeng 87:451–458

    CAS  Google Scholar 

  • Ramasamy K, Parwin Banu S (2007) Bioremediation of metals: microbial processes and techniques. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 173–187

    Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13

    Google Scholar 

  • Robu B, Bulgariu L, Bulgariu D, Macoveanu M (2008) Quantification of impact and risk induced in surface water by heavy metals: case sudy—Bahlui River, Iasi. Environ Eng Manag J 7:263–267

    CAS  Google Scholar 

  • Rubin E, Burhan Y (2006) Noncombustion technologies for remediation of persistent organic pollutants in stockpiles and soil. Remediat J 16:23–42

    Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  Google Scholar 

  • Schiopu AM, Robu BM, Apostol I, Gavrilescu M (2009) Impact of landfill leachate on soil quality in Iasi city. Environ Eng Manag J 8:1155–1164

    CAS  Google Scholar 

  • Scholz RW, Schnabel U (2006) Decision making under uncertainty in case of soil remediation. J Environ Manag 80:132–147

    CAS  Google Scholar 

  • Sellers J (1999) Written testimony to the Senate Committee on Agriculture, Nutrition, and Forestry regarding the Chariton Valley RC&D Project. http://www.senate.gov/~agriculture/Hearings/Hearings_1999/sel99527.htm

  • Semprini L, Dolan ME, Mathias MA, Hopkins GD, McCarty PL (2007) Laboratory, field, and modeling studies of bioaugmentation of butane-utilizing microorganisms for the in situ cometabolic treatment of 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane. Adv Water Resour 30:1528–1546

    CAS  Google Scholar 

  • Sun X, Sun T, Zhang Q, Wanga W (2008) Degradation mechanism of PCDDs initiated by OH radical in photo-Fenton oxidation technology: quantum chemistry and quantitative structure–activity relationship. Sci Total Environ 402:123–129

    CAS  Google Scholar 

  • Suthersan S (2001) Natural and enhanced remediation systems. CRC Press, Boca Raton

    Google Scholar 

  • Tarr M (2003) Chemical degradation methods for wastes and pollutants: environmental and industrial applications. CRC Press, Boca Raton

    Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    CAS  Google Scholar 

  • Thöming J, Kliem BK, Ottosen LM (2000) Electrochemically enhanced oxidation reactions in sandy soil polluted with mercury. Sci Total Environ 261:137–147

    Google Scholar 

  • Torrades F, García-Hortal JA, Núñez L (2008) Fenton and photo-Fenton oxidation of a model mixture of dyes—overall kinetic analysis. Color Technol 124:370–374

    CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nanotoday 1:44–48

    Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358

    CAS  Google Scholar 

  • Tuzen M, Ozdemir M, Demirbas A (1998) Heavy metal bioaccumulation by cultivated Agaricus bisporus from artificially enriched substrates. Z Lebensm Unters Forsch A 206:417–419

    CAS  Google Scholar 

  • UNEP and ADEME Guide (2005) Identification and management of contaminated sites. A methodological guide. UNEP/ADEME, Paris

  • USEPA (1996) Superfund innovative technology evaluation program, EPA/540/R-97/502. U.S. Environmental Protection Agency, Washington, DC

  • USEPA (1998) Permeable reactive barriers for contaminant remediation, EPA/600/R98/125. Remedial technology development forum report. Office of Research and Development. http://www.clu-in.org/download/rtdf/prb/reactbar.pdf

  • USEPA (2000) Abstracts of remediation case studies, vol. 4, Federal remediation technologies roundtable, EPA 542-R-00-006. http://www.epa.gov/tio/download/frtr/abstractsvol4.pdf

  • Verstraete W, Devliegher W (1996) Formation of non-bioavailable organic residues in soil: perspectives for site remediation. Biodegradation 7:471–485

    CAS  Google Scholar 

  • Vijayaraghavan K, Yun Y-S (2009) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Google Scholar 

  • Vijver MG, Gestel CAMV, Lanno RP, Van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol 38:4705–4712

    CAS  Google Scholar 

  • Vinodhini R, Narayanan M (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). Int J Environ Sci Technol 5:179–182

    CAS  Google Scholar 

  • Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121

    CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Boca Raton

    Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorbents for heavy metals removal and their future. Biotechnol Adv 24:427–451

    CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 27:195–226

    Google Scholar 

  • Wang C-B, Wei-X Zhang (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    CAS  Google Scholar 

  • Ward OP, Singh A (2004) Evaluation of current soil bioremediation technologies. In: Singh A, Ward OP (eds) Soil biology, vol 1: Applied bioremediation and phytoremediation. Springer, Berlin, pp 187–214

    Google Scholar 

  • Watlington K (2005) Emerging nanotechnologies for site remediation and wastewater treatment. Report, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Office of Superfund Remediation and Technology Innovation, Technology Innovation and Field Services Division, Washington, DC

  • Weber R, Gaus C, Tysklind M et al (2008) Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges. Environ Sci Pollut Res 15:363–393

    CAS  Google Scholar 

  • Yan G, Viraraghavan T (2008) Mechanism of biosorption of heavy metals by Mucor rouxii. Eng Life Sci 8:363–371

    CAS  Google Scholar 

  • Yaron B, Dror I, Berkowit B (2008) Contaminant-induced irreversible changes in properties of the soil–vadose–aquifer zone: an overview. Chemosphere 71:1409–1421

    CAS  Google Scholar 

  • Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gavrilescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caliman, F.A., Robu, B.M., Smaranda, C. et al. Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Techn Environ Policy 13, 241–268 (2011). https://doi.org/10.1007/s10098-010-0319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-010-0319-z

Keywords

Navigation