Skip to main content
Log in

Implications of stx loss for clinical diagnostics of Shiga toxin-producing Escherichia coli

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The dynamics related to the loss of stx genes from Shiga toxin-producing Escherichia coli remain unclear. Current diagnostic procedures have shortcomings in the detection and identification of STEC. This is partly owing to the fact that stx genes may be lost during an infection or in the laboratory. The aim of the present study was to provide new insight into in vivo and in vitro stx loss in order to improve diagnostic procedures. Results from the study support the theory that loss of stx is a strain-related phenomenon and not induced by patient factors. It was observed that one strain could lose stx both in vivo and in vitro. Whole genome comparison of stx-positive and stx-negative isolates from the same patient revealed that different genomic rearrangements, such as complete or partial loss of the parent prophage, may be factors in the loss of stx. Of diagnostic interest, it was shown that patients can be co-infected with different E. coli pathotypes. Therefore, identification of eae-positive, but stx-negative isolates should not be interpreted as “Shiga toxin-lost” E. coli without further testing. Growth and recovery of STEC were supported by different selective agar media for different strains, arguing for inclusion of several media in STEC diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic uremic syndrome. Lancet 365:1073–1086

    CAS  PubMed  Google Scholar 

  2. Bai X, Fu S, Zhang J, Fan R, Xu Y, Sun H, He X, Xu J, Xiong Y (2018) Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci Rep 8:6756. https://doi.org/10.1038/s41598-018-25233-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Naseer U, Løbersli I, Hindrum M, Bruvik T, Brandal LT (2017) Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uremic syndrome in Norway, 1992-2013. Eur J Clin Microbiol Infect Dis 36:1613–1620

    Article  CAS  Google Scholar 

  4. Fasel D, Mellmann A, Cernela N, Hächler H, Fruth A, Khanna N, Egli A, Beckmann C, Hirsch HH, Goldenberger D, Stephan R (2014) Hemolytic uremic syndrome in a 65-year-old male linked to a very unusual type of stx 2e - and eae-harboring O51:H49 Shiga toxin-producing Escherichia coli. JCM 52(4):1301–1303

    Article  Google Scholar 

  5. Saupe A, Edel B, Pfister W, Löffler B, Ehricht R, Rödel J (2017). Acute diarrhea due to a Shiga toxin 2e-producing Escherichia coli O8:H19. JMM Case Rep 4. doi:https://doi.org/10.1099/jmmcr.0.005099

  6. Herold S, Karch H, Schmidt H (2004) Shiga toxin-encoding bacteriophages — genomes in motion. Int J Med Microbiol 294:115–121

    Article  CAS  Google Scholar 

  7. de Sablet T, Bertin Y, Vareille M, Girardeau JP, Garrivier A, Gobert AP, Martin C (2008) Differential expression of stx2 variants in Shiga toxin-producing Escherichia coli belonging to seropathotypes a and C. Microbiology 154(Pt 1):176–186

    Article  Google Scholar 

  8. Waldor MK, Friedman DI (2005) Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 8(4):459–465

    Article  CAS  Google Scholar 

  9. Bielaszewska M, Prager R, Köck R, Mellmann A, Zhang W, Tschäpe H, Tarr PI, Karch H (2007) Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans. Appl Environ Microbiol 73(10):3144–3150

    Article  CAS  Google Scholar 

  10. Bielaszewska M, Köck R, Friedrich AW, von Eiff C, Zimmerhackl LB, Karch H, Mellmann A (2007) Shiga toxin-mediated hemolytic uremic syndrome: time to change the diagnostic paradigm? PLoS One 2(10):e1024

    Article  Google Scholar 

  11. Mellmann A, Lu S, Karch H, Xu JG, Harmsen D, Schmidt MA, Bielaszewska M (2008) Recycling of Shiga toxin 2 genes in sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM. Appl Environ Microbiol 74(1):67–72

    Article  CAS  Google Scholar 

  12. Karch H, Meyer T, Rüssmann J (1992) Frequent loss of Shiga-like toxin genes in clinical isolates of Escherichia coli upon subcultivation. Infect Immun 60:3464–3467

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tunsjø HS, Kvissel AK, Follin-Arbelet B, Brotnov B-M, Ranheim TE, Leegaard TM (2015) Suitability of stx-PCR directly from fecal samples in clinical diagnostics of STEC. APMIS 123(10):872–878

    Article  Google Scholar 

  14. Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G, Karch H, Mellan A, Caprioli A, Tozzoli R, Morabito S et al (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. JCM 50(9):2951–2963

    Article  CAS  Google Scholar 

  15. Nielsen EM, Andersen MT (2003) Detection and characterization of verocytotoxin-producing Escherichia coli by automated 50 nuclease PCR assay. J Clin Microbiol 41:2884–2893

    Article  CAS  Google Scholar 

  16. Lin A, Sutton O, Lau HK, Wong E, Hartman G, Lauzon CR (2011) O-serogroup specific real-time PCR assays for the detection and identification of nine clinically relevant non O-157 STECs. Food Microbiol 28:478–483

    Article  CAS  Google Scholar 

  17. Guy RA, Tremblay D, Beausoleil L, Harel J, Champagne MJ (2014) Quantification of E. coli O157 and STEC in feces of farm animals using direct multiplex real time PCR (qPCR) and a modified most probable number assay comprised of immunomagnetic bead separation and qPCR detection. J Microbiol Methods 99:44–53

    Article  CAS  Google Scholar 

  18. Beutin L, Delannoy S, Fach P (2015) Sequence variations in the flagellar antigen genes fliCH25 and fliCH28 of Escherichia coli and their use in identification and characterization of Enterohemorrhagic E. coli (EHEC) O145:H25 and O145:H28. PLoS One 10(5):e0126749

    Article  Google Scholar 

  19. Hyma KE, Lacher DW, Nelson AM, Bumbaugh AC, Janda JM, Strockbine NA, Young VB, Whittam TS (2005) (2005). Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol 187(2):619–628

    Article  CAS  Google Scholar 

  20. Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S, Hasman H, Sicheritz-Pontén T, Aarestrup FM, Ussery DW, Lund O (2014) Benchmarking of methods for genomic taxonomy. J Clin Microbiol 52(5):1529–1539

    Article  Google Scholar 

  21. Cosentino S, Voldby Larsen M, Møller Aarestrup F, Lund O (2013) PathogenFinder – distinguishing friend from foe using bacterial whole genome sequencing data. PlosOne 8(10):e77302

    Article  CAS  Google Scholar 

  22. Joensen KGAM, Tetzschner A, Iguchi FM, Aarestrup M, Scheutz F (2015) Rapid and easy in silico serotyping of Escherichia coli using whole genome sequencing (WGS) data. J Clin Microbiol 53(8):2410–2426

    Article  CAS  Google Scholar 

  23. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup M, Lund O (2012) Multilocus sequence typing of Total genome sequenced bacteria. J Clin Micobiol 50(4):1355–1361

    Article  CAS  Google Scholar 

  24. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Aarestrup FM, Hasman H (2014) In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58(7):3895–3903

    Article  Google Scholar 

  25. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol 52(5):1501–1510

    Article  Google Scholar 

  26. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  Google Scholar 

  27. Brandal LT, Tunsjø HS, Ranheim TE, Løbersli I, Lange H, Wester AL (2015) Shiga toxin 2a in Escherichia albertii. JCM 53(4):1454–1455

    Article  Google Scholar 

  28. Joris M-A, Verstraete K, De Reu K, De Zutter L (2011) Loss of vtx genes after the first subcultivation step of Verocytotoxigenic Escherichia coli O157 and non-O157 during isolation from naturally contaminated fecal samples. Toxins (Basel) 3(6):672–677

    Article  Google Scholar 

  29. Matussek A, Jernberg C, Einemo I-M, Monecke S, Ehricht R, Engelmann I, Löfgren S, Mernelius S (2017) Genetic make-up of Shiga toxin-producing Escherichia coli in relation to clinical symptoms and duration of shedding: a microarray analysis of isolates from Swedish children. Eur J Clin Microbiol Infect Dis 36:1433–1441

    Article  CAS  Google Scholar 

  30. Shaikh N, Tarr PI (2003) Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolution-ary implications. J Bacteriol 185:3596–3605

    Article  CAS  Google Scholar 

  31. Strategy report of enteropathogens, Norwegian public health, 2011. Available from https://www.fhi.no/globalassets/dokumenterfiler/rapporter/strategirapporter/strategirapport-nr-10-1996-bakteriologiske-faecesundersokelser-med-revisjoner-fra-2007-og-2011-.pdf

  32. Hirvonen JJ, Siitonen A, Kaukoranta SS (2012) Usability and performance of CHROMagar STEC medium in detection of Shiga toxin-producing Escherichia coli strains. J Clin Microbiol 50(11):3586–3590

    Article  CAS  Google Scholar 

  33. Gill A, Huszczynski G, Gauthier M, Blais B (2014) Evaluation of eight agar media for the isolation of Shiga toxin-producing Escherichia coli. J Microbiol Methods 96:6–11

    Article  Google Scholar 

  34. Gouali M, Ruckly C, Carle I, Lejay-Collin M, Weill F-X (2013) Evaluation of CHROMagar STEC and STEC O104 chromogenic agar Media for Detection of Shiga toxin-producing Escherichia coli in stool specimens. J Clin Microbiol 51(3):894–900

    Article  CAS  Google Scholar 

  35. Martinez-Castillo A, Quirós P, Navarro F, Miró E, Muniesa M (2013) Shiga toxin 2-encoding bacteriophages in human fecal samples from healthy individuals. Appl Environ Microbiol 79:4862–4868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank colleagues at the Department of Microbiology and Infection Control at Ahus for laboratory assistance. Parts of the contents have been presented in a report to the National Institute of Public Health. The sequencing service was provided by the Norwegian Sequencing Centre (www.sequencing.uio.no), a national technology platform hosted by the University of Oslo and supported by the “Functional Genomics” and “Infrastructure” programs of the Research Council of Norway and the Southeastern Regional Health Authorities.

Funding

This study received funding from Akershus University Hospital, National Institute of Public Health and Oslo Metropolitan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hege Smith Tunsjø.

Ethics declarations

The study was approved by the Data protection manager at Ahus (Project number12-042) and by the Regional Committees for Medical and Health Research Ethics (REK), South East, Norway (Project number 2012-102).

Informed consent was obtained from all participants.

á…ź

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthakumaran, T., Brandal, L.T., Lindstedt, BA. et al. Implications of stx loss for clinical diagnostics of Shiga toxin-producing Escherichia coli. Eur J Clin Microbiol Infect Dis 37, 2361–2370 (2018). https://doi.org/10.1007/s10096-018-3384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-018-3384-6

Keywords

Navigation