Skip to main content

Advertisement

Log in

DNA microarray analysis of Staphylococcus aureus causing bloodstream infection: bacterial genes associated with mortality?

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Providing evidence for microbial genetic determinants’ impact on outcome in Staphylococcus aureus bloodstream infections (SABSI) is challenging due to the complex and dynamic microbe–host interaction. Our recent population-based prospective study reported an association between the S. aureus clonal complex (CC) 30 genotype and mortality in SABSI patients. This follow-up investigation aimed to examine the genetic profiles of the SABSI isolates and test the hypothesis that specific genetic characteristics in S. aureus are associated with mortality. SABSI isolates (n = 305) and S. aureus CC30 isolates from asymptomatic nasal carriers (n = 38) were characterised by DNA microarray analysis and spa typing. Fisher’s exact test, least absolute shrinkage and selection operator (LASSO) and elastic net regressions were performed to discern within four groups defined by patient outcome and characteristics. No specific S. aureus genetic determinants were found to be associated with mortality in SABSI patients. By applying LASSO and elastic net regressions, we found evidence suggesting that agrIII and cna were positively and setC (=selX) and seh were negatively associated with S. aureus CC30 versus non-CC30 isolates. The genes chp and sak, encoding immune evasion molecules, were found in higher frequencies in CC30 SABSI isolates compared to CC30 carrier isolates, indicating a higher virulence potential. In conclusion, no specific S. aureus genes were found to be associated with mortality by DNA microarray analysis and state-of-the-art statistical analyses. The next natural step is to test the hypothesis in larger samples with higher resolution methods, like whole genome sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB (2012) Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev 25(2):362–386

    Article  PubMed  PubMed Central  Google Scholar 

  2. Powers ME, Bubeck Wardenburg J (2014) Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog 10(2), e1003871. doi:10.1371/journal.ppat.1003871

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCarthy AJ, Witney AA, Lindsay JA (2012) Staphylococcus aureus temperate bacteriophage: carriage and horizontal gene transfer is lineage associated. Front Cell Infect Microbiol 2:6. doi:10.3389/fcimb.2012.00006

    Article  PubMed  PubMed Central  Google Scholar 

  4. van Belkum A, Melles DC, Nouwen J, van Leeuwen WB, van Wamel W, Vos MC et al (2009) Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect Genet Evol 9(1):32–47

    Article  PubMed  Google Scholar 

  5. Lindsay JA (2010) Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol 300(2–3):98–103. doi:10.1016/j.ijmm.2009.08.013

    Article  CAS  PubMed  Google Scholar 

  6. Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M et al (2011) A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6(4), e17936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rasmussen G, Monecke S, Ehricht R, Söderquist B (2013) Prevalence of clonal complexes and virulence genes among commensal and invasive Staphylococcus aureus isolates in Sweden. PLoS One 8(10), e77477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rieg S, Jonas D, Kaasch AJ, Porzelius C, Peyerl-Hoffmann G, Theilacker C et al (2013) Microarray-based genotyping and clinical outcomes of Staphylococcus aureus bloodstream infection: an exploratory study. PLoS One 8(8), e71259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fowler VG Jr, Nelson CL, McIntyre LM, Kreiswirth BN, Monk A, Archer GL et al (2007) Potential associations between hematogenous complications and bacterial genotype in Staphylococcus aureus infection. J Infect Dis 196(5):738–747

    Article  PubMed  Google Scholar 

  10. Nienaber JJC, Sharma Kuinkel BK, Clarke-Pearson M, Lamlertthon S, Park L, Rude TH et al (2011) Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. J Infect Dis 204(5):704–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiong YQ, Fowler VG, Yeaman MR, Perdreau-Remington F, Kreiswirth BN, Bayer AS (2009) Phenotypic and genotypic characteristics of persistent methicillin-resistant Staphylococcus aureus bacteremia in vitro and in an experimental endocarditis model. J Infect Dis 199(2):201–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aamot HV, Blomfeldt A, Eskesen AN (2012) Genotyping of 353 Staphylococcus aureus bloodstream isolates collected between 2004 and 2009 at a Norwegian University Hospital and potential associations with clinical parameters. J Clin Microbiol 50(9):3111–3114

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blomfeldt A, Eskesen AN, Aamot HV, Leegaard TM, Bjørnholt JV (2016) Population-based epidemiology of Staphylococcus aureus bloodstream infection: clonal complex 30 genotype is associated with mortality. Eur J Clin Microbiol Infect Dis 35(5):803–813. doi:10.1007/s10096-016-2601-4

    Article  CAS  PubMed  Google Scholar 

  14. Fossum AE, Bukholm G (2006) Increased incidence of methicillin-resistant Staphylococcus aureus ST80, novel ST125 and SCCmecIV in the south-eastern part of Norway during a 12-year period. Clin Microbiol Infect 12(7):627–633

    Article  CAS  PubMed  Google Scholar 

  15. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38(3):1008–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Monecke S, Jatzwauk L, Weber S, Slickers P, Ehricht R (2008) DNA microarray-based genotyping of methicillin-resistant Staphylococcus aureus strains from Eastern Saxony. Clin Microbiol Infect 14(6):534–545. doi:10.1111/j.1469-0691.2008.01986.x

    Article  CAS  PubMed  Google Scholar 

  17. Monecke S, Slickers P, Ehricht R (2008) Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol Med Microbiol 53(2):237–251. doi:10.1111/j.1574-695X.2008.00426.x

    Article  CAS  PubMed  Google Scholar 

  18. Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16(4):385–395

    Article  CAS  PubMed  Google Scholar 

  19. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Royal Stat Soc: Series B (Statistical Methodology) 67(2):301–320

    Article  Google Scholar 

  20. Ogutu JO, Schulz-Streeck T, Piepho H-P (2012) Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc 6(Suppl 2):S10

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zemmour C, Bertucci F, Finetti P, Chetrit B, Birnbaum D, Filleron T et al (2015) Prediction of early breast cancer metastasis from DNA microarray data using high-dimensional Cox regression models. Cancer Inform 14(Suppl 2):129–138. doi:10.4137/CIN.S17284

    PubMed  PubMed Central  Google Scholar 

  22. Waldmann P, Mészáros G, Gredler B, Fürst C, Sölkner J (2013) Evaluation of the lasso and the elastic net in genome-wide association studies. Front Genet 4:270. doi:10.3389/fgene.2013.00270

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26(11):2465–2466

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Robinson DA, Enright MC (2004) Evolution of Staphylococcus aureus by large chromosomal replacements. J Bacteriol 186:1060–1064. doi:10.1128/JB.186.4.1060-1064.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas JC, Godfrey PA, Feldgarden M, Robinson DA (2012) Draft genome sequences of Staphylococcus aureus sequence type 34 (ST34) and ST42 hybrids. J Bacteriol 194(10):2740–2741. doi:10.1128/jb.00248-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Poll T, Opal SM (2008) Host–pathogen interactions in sepsis. Lancet Infect Dis 8(1):32–43. doi:10.1016/S1473-3099(07)70265-7

    Article  PubMed  Google Scholar 

  27. Luedicke C, Slickers P, Ehricht R, Monecke S (2010) Molecular fingerprinting of Staphylococcus aureus from bone and joint infections. Eur J Clin Microbiol Infect Dis 29(4):457–463. doi:10.1007/s10096-010-0884-4

    Article  CAS  PubMed  Google Scholar 

  28. Bouchiat C, Moreau K, Devillard S, Rasigade J-P, Mosnier A, Geissmann T et al (2015) Staphylococcus aureus infective endocarditis versus bacteremia strains: Subtle genetic differences at stake. Infect Genet Evol 36:524–530. doi:10.1016/j.meegid.2015.08.029

    Article  CAS  PubMed  Google Scholar 

  29. Aamot HV, Stavem K, Skråmm I (2015) No change in the distribution of types and antibiotic resistance in clinical Staphylococcus aureus isolates from orthopaedic patients during a period of 12 years. Eur J Clin Microbiol Infect Dis 34(9):1833–1837. doi:10.1007/s10096-015-2420-z, Epub 2015/06/17

    Article  CAS  PubMed  Google Scholar 

  30. Ziebandt A-K, Kusch H, Degner M, Jaglitz S, Sibbald MJJB, Arends JP et al (2010) Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Proteomics 10(8):1634–1644. doi:10.1002/pmic.200900313

    Article  CAS  PubMed  Google Scholar 

  31. den Reijer PM, Lemmens-den Toom N, Kant S, Snijders SV, Boelens H, Tavakol M et al (2013) Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in human blood. PLoS One 8(1), e53391. doi:10.1371/journal.pone.0053391

    Article  Google Scholar 

  32. Gill SR, McIntyre LM, Nelson CL, Remortel B, Rude T, Reller LB et al (2011) Potential associations between severity of infection and the presence of virulence-associated genes in clinical strains of Staphylococcus aureus. PLoS One 6(4), e18673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lindsay JA, Moore CE, Day NP, Peacock SJ, Witney AA, Stabler RA et al (2006) Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188(2):669–676. doi:10.1128/JB.188.2.669-676.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holden MT, Hsu L-Y, Kurt K, Weinert LA, Mather AE, Harris SR et al (2013) A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 23(4):653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laabei M, Recker M, Rudkin JK, Aldeljawi M, Gulay Z, Sloan TJ et al (2014) Predicting the virulence of MRSA from its genome sequence. Genome Res 24(5):839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Young BC, Golubchik T, Batty EM, Fung R, Larner-Svensson H, Votintseva AA et al (2012) Evolutionary dynamics of Staphylococcus aureus during progression from carriage to disease. Proc Natl Acad Sci U S A 109(12):4550–4555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Priest NK, Rudkin JK, Feil EJ, van den Elsen JMH, Cheung A, Peacock SJ et al (2012) From genotype to phenotype: can systems biology be used to predict Staphylococcus aureus virulence? Nat Rev Microbiol 10(11):791–797

    Article  CAS  PubMed  Google Scholar 

  38. Ewald PW (1994) Evolution of infectious disease. Oxford University Press, New York

    Google Scholar 

  39. Laabei M, Uhlemann A-C, Lowy FD, Austin ED, Yokoyama M, Ouadi K et al (2015) Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus. PLoS Biol 13(9), e1002229

    Article  PubMed  PubMed Central  Google Scholar 

  40. Massey RC, Horsburgh MJ, Lina G, Höök M, Recker M (2006) The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? Nat Rev Microbiol 4(12):953–958

    Article  CAS  PubMed  Google Scholar 

  41. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564

    Article  CAS  PubMed  Google Scholar 

  42. Geisinger E, Chen J, Novick RP (2012) Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus. J Bacteriol 194(11):2854–2864. doi:10.1128/jb.06685-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12(1):49–62. doi:10.1038/nrmicro3161

    Article  CAS  PubMed  Google Scholar 

  44. Elasri MO, Thomas JR, Skinner RA, Blevins JS, Beenken KE, Nelson CL et al (2002) Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis. Bone 30(1):275–280. doi:10.1016/S8756-3282(01)00632-9

    Article  CAS  PubMed  Google Scholar 

  45. Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K et al (2002) Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 70(9):4987–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Omoe K, Ishikawa M, Shimoda Y, Hu D-L, Ueda S, Shinagawa K (2002) Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei genes. J Clin Microbiol 40(3):857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grumann D, Nübel U, Bröker BM (2014) Staphylococcus aureus toxins—their functions and genetics. Infect Genet Evol 21:583–592. doi:10.1016/j.meegid.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  48. van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315. doi:10.1128/JB.188.4.1310-1315.2006

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC et al (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199(5):687–695

    Article  PubMed  PubMed Central  Google Scholar 

  50. Postma B, Poppelier MJ, van Galen JC, Prossnitz ER, van Strijp JA, de Haas CJ et al (2004) Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol 172(11):6994–7001, Epub 2004/05/22

    Article  CAS  PubMed  Google Scholar 

  51. Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA (2005) Anti-opsonic properties of staphylokinase. Microbes Infect 7(3):476–484

    Article  CAS  PubMed  Google Scholar 

  52. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A (2004) Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172(2):1169–1176

    Article  CAS  PubMed  Google Scholar 

  53. Bouchiat C, Mehenni C, Meugnier H, Bes M, Tristan A, Vandenesch F (2014) Limitations of staphylokinase as a marker for Staplylococcus aureus invasive infections in humans. J Infect Dis 210(8):1341–1343

    Article  PubMed  Google Scholar 

  54. Jin T, Bokarewa M, McIntyre L, Tarkowski A, Corey GR, Reller LB et al (2003) Fatal outcome of bacteraemic patients caused by infection with staphylokinase-deficient Staphylococcus aureus strains. J Med Microbiol 52(Pt 10):919–923

    Article  PubMed  Google Scholar 

  55. Holtfreter S, Grumann D, Schmudde M, Nguyen HTT, Eichler P, Strommenger B et al (2007) Clonal distribution of superantigen genes in clinical Staphylococcus aureus isolates. J Clin Microbiol 45(8):2669–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Verkaik NJ, de Vogel CP, Boelens HA, Grumann D, Hoogenboezem T, Vink C et al (2009) Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus. J Infect Dis 199(5):625–632. doi:10.1086/596743

    Article  PubMed  Google Scholar 

  57. Peres AG, Madrenas J (2013) The broad landscape of immune interactions with Staphylococcus aureus: from commensalism to lethal infections. Burns 39(3):380–388

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Inge Skråmm, Hanne G. M. Hexeberg and co-workers from the Department of Orthopaedics for the data and sample collection from elective surgery patients. We thank colleagues in the Department of Microbiology and Infection Control for the diagnostics of S. aureus isolates and Karin Helmersen for performing the spa typing. We are grateful for the technical assistance from Antje Ruppelt, Medical Faculty Carl Gustav Carus, Dresden, Germany, regarding the microarray analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Blomfeldt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. S. Monecke is an employee at Alere Technologies GmbH, Jena, Germany.

Funding

The study was supported by a Strategic Research grant (2619028/90003) from Akershus University Hospital.

Ethical considerations

Ethical approval was given by the Norwegian Regional Ethics Committee South-East (2009/2149-1) and by the Data Protection Official at Akershus University Hospital (2010-041).

Informed consent

Written informed consent was obtained from all individual participants included in the study, except for a small fraction of patients (n = 22) who died before an interview could be performed and consent could be asked for.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blomfeldt, A., Aamot, H.V., Eskesen, A.N. et al. DNA microarray analysis of Staphylococcus aureus causing bloodstream infection: bacterial genes associated with mortality?. Eur J Clin Microbiol Infect Dis 35, 1285–1295 (2016). https://doi.org/10.1007/s10096-016-2663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2663-3

Keywords

Navigation