Skip to main content

Advertisement

Log in

Species distribution and susceptibility profile to fluconazole, voriconazole and MXP-4509 of 551 clinical yeast isolates from a Romanian multi-centre study

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

This is the first multi-centre study regarding yeast infections in Romania. The aim was to determine the aetiological spectrum and susceptibility pattern to fluconazole, voriconazole and the novel compound MXP-4509. The 551 isolates were identified using routine laboratory methods, matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and DNA sequence analysis. Susceptibility testing was performed using the European Committee for Antimicrobial Susceptibility Testing (EUCAST) method and breakpoints. The yeasts originated from superficial infections (SUP, 51.5 %), bloodstream infections (BSI, 31.6 %) and deep-seated infections (DEEP, 16.9 %), from patients of all ages. Nine genera and 30 species were identified. The 20 Candida species accounted for 94.6 % of all isolates. C. albicans was the overall leading pathogen (50.5 %). Lodderomyces elongisporus is reported for the first time as a fungaemia cause in Europe. C. glabrata and Saccharomyces cerevisiae, as well as the non-Candida spp. and non-albicans Candida spp. groups, showed decreased fluconazole susceptibility (<75 %). The overall fluconazole resistance was 10.2 %. C. krusei accounted for 27 of the 56 fluconazole-resistant isolates. The overall voriconazole resistance was 2.5 % and was due mainly to C. glabrata and C. tropicalis isolates. Fluconazole resistance rates for the three categories of infection were similar to the overall value; voriconazole resistance rates differed: 4 % for BSI, 3.2 % for DEEP and 1.4 % for SUP. The antifungal activity of MXP-4509 was superior to voriconazole against C. glabrata and many fluconazole-resistant isolates. There was a large percentage of non-albicans Candida isolates. A large part of the high fluconazole resistance was not acquired but intrinsic, resulting from the high percentage of C. krusei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lehrnbecher T, Frank C, Engels K, Kriener S, Groll AH, Schwabe D (2010) Trends in the postmortem epidemiology of invasive fungal infections at a university hospital. J Infect 61:259–265. doi:10.1016/j.jinf.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  2. Enoch DA, Ludlam HA, Brown NM (2006) Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55(Pt 7):809–818. doi:10.1099/jmm.0.46548-0

    Article  CAS  PubMed  Google Scholar 

  3. Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicolas-Chanoin MH et al (1995) The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 274(8):639–644

    Article  CAS  PubMed  Google Scholar 

  4. Eggimann P, Bille J, Marchetti O (2011) Diagnosis of invasive candidiasis in the ICU. Ann Intensive Care 1:37. doi:10.1186/2110-5820-1-37

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gudlaugsson O, Gillespie S, Lee K, Vande Berg J, Hu J, Messer S et al (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37(9):1172–1177. doi:10.1086/378745

    Article  PubMed  Google Scholar 

  6. Bensadoun R-J, Patton LL, Lalla RV, Epstein JB (2011) Oropharyngeal candidiasis in head and neck cancer patients treated with radiation: update 2011. Support Care Cancer 19:737–744. doi:10.1007/s00520-011-1154-4

    Article  PubMed  Google Scholar 

  7. Bremenkamp RM, Caris AR, Jorge AOC, Back-Brito GN, Mota AJ, Balducci I et al (2011) Prevalence and antifungal resistance profile of Candida spp. oral isolates from patients with type 1 and 2 diabetes mellitus. Arch Oral Biol 56:549–555

    Article  CAS  PubMed  Google Scholar 

  8. Sobel JD (2010) Genital candidiasis. Medicine (Baltimore) 38:286–290. doi:10.1016/j.mpmed.2010.02.001

    Article  Google Scholar 

  9. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM et al (2007) Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45(6):735–745. doi:10.1128/JCM.00409-07

    Article  Google Scholar 

  10. Schmalreck AF, Willinger B, Haase G, Blum G, Lass-Flörl C, Fegeler W et al (2012) Species and susceptibility distribution of 1062 clinical yeast isolates to azoles, echinocandins, flucytosine and amphotericin B from a multi-centre study. Mycoses 55:e124–e137. doi:10.1111/j.1439-0507.2011.02165.x

    Article  CAS  PubMed  Google Scholar 

  11. Cuenca-Estrella M, Gomez-Lopez A, Mellado E, Monzon A, Buitrago MJ, Rodriguez-Tudela JL (2009) Activity profile in vitro of micafungin against Spanish clinical isolates of common and emerging species of yeasts and molds. Antimicrob Agents Chemother 53(1):2192–2195. doi:10.1128/AAC.01543-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V et al (2010) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48(4):1366–1377. doi:10.1128/JCM.02117-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yang Y-L, Chen H-T, Lin C-C, Chu W-L, Lo H-J; TSARY Hospitals (2013) Species distribution and drug susceptibilities of Candida isolates in TSARY 2010. Diagn Microbiol Infect Dis 76:182–186. doi:10.1016/j.diagmicrobio.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  14. Rodloff AC, Koch D, Schaumann R (2011) Epidemiology and antifungal resistance in invasive candidiasis. Eur J Med Res 16(4):187–195. doi:10.1186/2047-783X-16-4-187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Espinel-Ingroff A, Cuenca-Estrella M, Cantón E (2013) EUCAST and CLSI: working together towards a harmonized method for antifungal susceptibility testing. Curr Fungal Infect Rep 7(1):59–67. doi:10.1007/s12281-012-0125-7

    Article  Google Scholar 

  16. Cisterna R, Tellería O, Hernaez S, Ezpeleta G (2012) Impact of the new clinical breaking points proposed by the Clinical and Laboratory Standards Institute (CLSI) in the antifungal susceptibility profile of clinical strains isolated from invasive bloodstream Candida spp. Infections in Spain. Clin Med Insights Ther 4:19–27. doi:10.4137/CMT.S8293

  17. Clinical and Laboratory Standards Institute (CLSI) (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved Standard—Third Edition. CLSI document M27-A3

  18. Lockhart SR, Iqbal N, Cleveland AA, Farley MM, Harrison LH, Bolden CB et al (2012) Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J Clin Microbiol 50(11):3435–3442. doi:10.1128/JCM.01283-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Clinical and Laboratory Standards Institute (CLSI) (2004) Method for antifungal disk diffusion susceptibility testing of yeasts; Approved Guideline. CLSI document M44-A

  20. Normenausschuss Medizin (NAMed) im DIN Deutsches Institut für Normung e.V. (2002) DIN 58940-84:2002-10. Medical microbiology – susceptibility testing of microbial pathogens to antimicrobial agents – part 84: microdilution; special requirements for testing of fungi against antifungal agents

  21. Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST) (2008) EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect 14:398–405. doi:10.1111/j.1469-0691.2007.01935.x

    Article  Google Scholar 

  22. Pemán J, Cantón E, Linares-Sicilia MJ, Roselló EM, Borrell N, Ruiz-Pérez-de-Pipaon MT et al (2011) Epidemiology and antifungal susceptibility of bloodstream fungal isolates in pediatric patients: a Spanish multicenter prospective survey. J Clin Microbiol 49(12):4158–4163. doi:10.1128/JCM.05474-11

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mareş M, Năstasă V, Ramona FM, Doroftei B, Stefanache A (2011) Comparative in vitro activities of fluconazole, voriconazole, and MXP-4509 against Romanian blood yeast isolates. Mycopathologia 172:487–492. doi:10.1007/s11046-011-9455-1

    Article  PubMed  Google Scholar 

  24. Marangoci N, Mares M, Silion M, Fifere A, Varganici C, Nicolescu A et al (2011) Inclusion complex of a new propiconazole derivative with β-cyclodextrin: NMR, ESI-MS and preliminary pharmacological studies. Results Pharma Sci 1:27–37. doi:10.1016/j.rinphs.2011.07.001

    Article  CAS  Google Scholar 

  25. Fifere A, Marangoci N, Maier S, Coroaba A, Maftei D, Pinteala M (2012) Theoretical study on β-cyclodextrin inclusion complexes with propiconazole and protonated propiconazole. Beilstein J Org Chem 8:2191–2201. doi:10.3762/bjoc.8.247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Romeo O, Criseo G (2011) Candida africana and its closest relatives. Mycoses 54:475–486. doi:10.1111/j.1439-0507.2010.01939.x

    Article  CAS  PubMed  Google Scholar 

  27. Kolecka A, Khayhan K, Groenewald M, Theelen B, Arabatzis M, Velegraki A et al (2013) Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:2491–2500. doi:10.1128/JCM.00470-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M et al (2012) Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol 50(11):3641–3651. doi:10.1128/JCM.02248-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (ed) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Chapter  Google Scholar 

  30. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172(8):4238–4246

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W; EUCAST-AFST (2012) EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect 18:E246–E247

    Article  CAS  PubMed  Google Scholar 

  32. European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2013) Antifungal agents. Breakpoint tables for interpretation of MICs. Version 6.1, valid from 2013-03-11. Available online at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Antifungal_breakpoints_v_6.1.pdf

  33. Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing (2008) EUCAST Technical Note on voriconazole. Clin Microbiol Infect 14:985–987. doi:10.1111/j.1469-0691.2008.02087.x

    Article  Google Scholar 

  34. Dannaoui E, Lortholary O, Raoux D, Bougnoux ME, Galeazzi G, Lawrence C et al (2008) Comparative in vitro activities of caspofungin and micafungin, determined using the method of the European Committee on Antimicrobial Susceptibility Testing, against yeast isolates obtained in France in 2005–2006. Antimicrob Agents Chemother 52(2):778–781. doi:10.1128/AAC.01140-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kurtzman CP, Fell JW, Boekhout T (eds) (2011) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, Oxford

    Google Scholar 

  36. Ahmad S, Khan ZU, Johny M, Ashour NM, Al-Tourah WH, Joseph L et al (2013) Isolation of Lodderomyces elongisporus from the catheter tip of a fungemia patient in the Middle East. Case Rep Med 2013:560406. doi:10.1155/2013/560406

    PubMed Central  PubMed  Google Scholar 

  37. Martinez M, López-Ribot JL, Kirkpatrick WR, Coco BJ, Bachmann SP, Patterson TF (2002) Replacement of Candida albicans with C. dubliniensis in human immunodeficiency virus-infected patients with oropharyngeal candidiasis treated with fluconazole. J Clin Microbiol 40(9):3135–3139. doi:10.1128/JCM.40.9.3135-3139.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Moran GP, Sullivan DJ, Henman MC, McCreary CE, Harrington BJ, Shanley DB et al (1997) Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrob Agents Chemother 41(3):617–623

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O et al (2014) ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect 20(Suppl 3):76–98. doi:10.1111/1469-0691.12360

    Article  CAS  PubMed  Google Scholar 

  40. Vazquez JA (2010) Trichosporon infection. Curr Fungal Infect Rep 4(1):52–58. doi:10.1007/s12281-010-0005-y

    Article  Google Scholar 

  41. Diekema DJ, Petroelje B, Messer SA, Hollis RJ, Pfaller MA (2005) Activities of available and investigational antifungal agents against Rhodotorula species. J Clin Microbiol 43(1):476–478. doi:10.1128/JCM.43.1.476-478.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sobel JD (2006) The emergence of non-albicans Candida species as causes of invasive candidiasis and candidemia. Curr Infect Dis Rep 8:427–433

    Article  PubMed  Google Scholar 

  43. Lass-Flörl C (2009) The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 52:197–205. doi:10.1111/j.1439-0507.2009.01691.x

    Article  PubMed  Google Scholar 

  44. Falagas ME, Roussos N, Vardakas KZ (2010) Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis 14:e954–e966. doi:10.1016/j.ijid.2010.04.006

    Article  PubMed  Google Scholar 

  45. Toubas D (2013) Epidémiologie des candidoses invasives/Epidemiology of invasive candidiasis. Rev Francoph Lab 2013:27–36. doi:10.1016/S1773-035X(13)71944-0

    Article  Google Scholar 

  46. Arendrup MC, Bruun B, Christensen JJ, Fuursted K, Johansen HK, Kjældgaard P et al (2011) National surveillance of fungemia in Denmark (2004 to 2009). J Clin Microbiol 49(1):325–334. doi:10.1128/JCM.01811-10

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sifuentes-Osornio J, Corzo-León DE, Ponce-de-León LA (2012) Epidemiology of invasive fungal infections in Latin America. Curr Fungal Infect Rep 6:23–34. doi:10.1007/s12281-011-0081-7

    Article  PubMed Central  PubMed  Google Scholar 

  48. Colombo AL, Guimarães T, Silva LR, de Almeida Monfardini LP, Cunha AK, Rady P et al (2007) Prospective observational study of candidemia in São Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality. Infect Control Hosp Epidemiol 28(5):570–576. doi:10.1086/513615

    Article  PubMed  Google Scholar 

  49. Montagna MT, Caggiano G, Lovero G, De Giglio O, Coretti C, Cuna T et al (2013) Epidemiology of invasive fungal infections in the intensive care unit: results of a multicenter Italian survey (AURORA Project). Infection 41:645–653. doi:10.1007/s15010-013-0432-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Taj-Aldeen SJ, Kolecka A, Boesten R, Alolaqi A, Almaslamani M, Chandra P et al (2014) Epidemiology of candidemia in Qatar, the Middle East: performance of MALDI-TOF MS for the identification of Candida species, species distribution, outcome, and susceptibility pattern. Infection 42:393–404. doi:10.1007/s15010-013-0570-4

    Article  CAS  PubMed  Google Scholar 

  51. Tortorano AM, Kibbler C, Peman J, Bernhardt H, Klingspor L, Grillot R (2006) Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents 27:359–366. doi:10.1016/j.ijantimicag.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  52. Charlier C, Hart E, Lefort A, Ribaud P, Dromer F, Denning DW et al (2006) Fluconazole for the management of invasive candidiasis: where do we stand after 15 years? J Antimicrob Chemother 57(3):384–410. doi:10.1093/jac/dki473

    Article  CAS  PubMed  Google Scholar 

  53. Alexander BD, Johnson MD, Pfeiffer CD, Jiménez-Ortigosa C, Catania J, Booker R et al (2013) Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56(12):1724–1732. doi:10.1093/cid/cit136

    Article  PubMed Central  PubMed  Google Scholar 

  54. Garcia-Effron G, Katiyar SK, Park S, Edlind TD, Perlin DS (2008) A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother 52(7):2305–2312. doi:10.1128/AAC.00262-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bassetti M, Taramasso L, Nicco E, Molinari MP, Mussap M, Viscoli C (2011) Epidemiology, species distribution, antifungal susceptibility and outcome of nosocomial candidemia in a tertiary care hospital in Italy. PLoS One 6(9):e24198. doi:10.1371/journal.pone.0024198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Chitasombat MN, Kofteridis DP, Jiang Y, Tarrand J, Lewis RE, Kontoyiannis DP (2012) Rare opportunistic (non-Candida, non-Cryptococcus) yeast bloodstream infections in patients with cancer. J Infect 64:68–75. doi:10.1016/j.jinf.2011.11.002

    Article  PubMed  Google Scholar 

  57. Lunardi LW, Aquino VR, Zimerman RA, Goldani LZ (2006) Epidemiology and outcome of Rhodotorula fungemia in a tertiary care hospital. Clin Infect Dis 15(43):e60–e63. doi:10.1086/507036

    Article  Google Scholar 

  58. Mashburn J (2006) Etiology, diagnosis, and management of vaginitis. J Midwifery Womens Health 51:423–430. doi:10.1016/j.jmwh.2006.07.005

    Article  PubMed  Google Scholar 

  59. Sobel JD (2007) Vulvovaginal candidosis. Lancet 369:1961–1971. doi:10.1016/S0140-6736(07)60917-9

    Article  PubMed  Google Scholar 

  60. Katiraee F, Khosravi AR, Khalaj V, Hajiabdolbaghi M, Khaksar AA, Rasoulinejad M (2012) In vitro antifungal susceptibility of oral Candida species from Iranian HIV infected patients. Tehran Univ Med J 70:96–103

    Google Scholar 

  61. Thompson GR 3rd, Patel PK, Kirkpatrick WR, Westbrook SD, Berg D, Erlandsen J et al (2010) Oropharyngeal candidiasis in the era of antiretroviral therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:488–495. doi:10.1016/j.tripleo.2009.11.026

    Article  PubMed Central  PubMed  Google Scholar 

  62. Ahmad A, Khan AU (2009) Prevalence of Candida species and potential risk factors for vulvovaginal candidiasis in Aligarh, India. Eur J Obstet Gynecol Reprod Biol 144:68–71. doi:10.1016/j.ejogrb.2008.12.020

    Article  PubMed  Google Scholar 

  63. Al Mubarak S, Robert AA, Baskaradoss JK, Al-Zoman K, Al Sohail A, Alsuwyed A et al (2013) The prevalence of oral Candida infections in periodontitis patients with type 2 diabetes mellitus. J Infect Public Health 6:296–301. doi:10.1016/j.jiph.2012.12.007

    Article  PubMed  Google Scholar 

  64. Katiraee F, Khosravi AR, Khalaj V, Hajiabdolbaghi M, Khaksar A, Rasoolinejad M et al (2010) Oropharyngeal candidiasis and oral yeast colonization in Iranian human immunodeficiency virus positive patients. J Mycol Médicale J Med Mycol 20:8–14. doi:10.1016/j.mycmed.2009.11.003

    Article  Google Scholar 

  65. Mañas A, Cerezo L, de la Torre A, García M, Alburquerque H, Ludeña B et al (2012) Epidemiology and prevalence of oropharyngeal candidiasis in Spanish patients with head and neck tumors undergoing radiotherapy treatment alone or in combination with chemotherapy. Clin Transl Oncol 14:740–746. doi:10.1007/s12094-012-0861-8

    Article  PubMed  Google Scholar 

  66. Corsello S, Spinillo A, Osnengo G, Penna C, Guaschino S, Beltrame A et al (2003) An epidemiological survey of vulvovaginal candidiasis in Italy. Eur J Obstet Gynecol Reprod Biol 110:66–72. doi:10.1016/S0301-2115(03)00096-4

    Article  PubMed  Google Scholar 

  67. Bohbot J-M, Sednaoui P, Verriere F, Achhammer I (2012) Diversité étiologique des vaginites. Gynécol Obstét Fertil 40:578–581. doi:10.1016/j.gyobfe.2011.08.001

    Article  PubMed  Google Scholar 

  68. Grigoriou O, Baka S, Makrakis E, Hassiakos D, Kapparos G, Kouskouni E (2006) Prevalence of clinical vaginal candidiasis in a university hospital and possible risk factors. Eur J Obstet Gynecol Reprod Biol 126(1):121–125. doi:10.1016/j.ejogrb.2005.09.015

    Article  PubMed  Google Scholar 

  69. Sojakova M, Liptajova D, Borovsky M, Subik J (2004) Fluconazole and itraconazole susceptibility of vaginal yeast isolates from Slovakia. Mycopathologia 157:163–169

    Article  CAS  PubMed  Google Scholar 

  70. Bulacio L, Paz M, Ramadán S, Ramos L, Pairoba C, Sortino M et al (2012) Oral infections caused by yeasts in patients with head and neck cancer undergoing radiotherapy. Identification of the yeasts and evaluation of their antifungal susceptibility. J Mycol Médicale 22:348–353. doi:10.1016/j.mycmed.2012.08.002

    Article  CAS  Google Scholar 

  71. Kamikawa Y, Nagayama T, Fujisaki J, Hirabayashi D, Kawasaki K, Hamada T et al (2013) Clinical study on anti-fungal drug activity against clinically isolated strains of oral Candida species. Oral Sci Int 10:87–94. doi:10.1016/S1348-8643(13)00006-2

    Article  Google Scholar 

  72. Mulu A, Kassu A, Anagaw B, Moges B, Gelaw A, Alemayehu M et al (2013) Frequent detection of ‘azole’ resistant Candida species among late presenting AIDS patients in northwest Ethiopia. BMC Infect Dis 13:82. doi:10.1186/1471-2334-13-82

    Article  PubMed Central  PubMed  Google Scholar 

  73. Migliorati CA, Birman EG, Cury AE (2004) Oropharyngeal candidiasis in HIV-infected patients under treatment with protease inhibitors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98:301–310. doi:10.1016/j.tripleo.2004.05.017

    Article  PubMed  Google Scholar 

  74. Pasqualotto AC (2009) Candida and the paediatric lung. Paediatr Respir Rev 10:186–191. doi:10.1016/j.prrv.2009.09.001

    Article  PubMed  Google Scholar 

  75. Beck JM, Young VB, Huffnagle GB (2012) The microbiome of the lung. Transl Res 160:258–266. doi:10.1016/j.trsl.2012.02.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Pfaller MA, Castanheira M, Lockhart SR, Jones RN (2012) Candida glabrata: multidrug resistance and increased virulence in a major opportunistic fungal pathogen. Curr Fungal Infect Rep 6(3):154–164. doi:10.1007/s12281-012-0091-0

    Article  Google Scholar 

  77. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Barton R, Bijie H et al (2010) Geographic variation in the frequency of isolation and fluconazole and voriconazole susceptibilities of Candida glabrata: an assessment from the ARTEMIS DISK Global Antifungal Surveillance Program. Diagn Microbiol Infect Dis 67:162–171. doi:10.1016/j.diagmicrobio.2010.01.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of National Education of Romania - CNCSIS - UEFISCDI, project numbers PN-II-RU-TE-159/2010 “Evaluation of the antifungal effect of nano conjugates of a new propiconazole derivative with beta-cyclodextrin” and PN-II-ID-PCCE-2011-2-0028 “Biologically inspired systems for engineered structural and functional entities”.

This publication was made possible by an NPRP grant 5-298-3-086 from the Qatar National Research Fund (a member of the Qatar Foundation) to Teun Boekhout. The statements herein are solely the responsibility of the authors.

Ethical standards

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minea, B., Nastasa, V., Moraru, R.F. et al. Species distribution and susceptibility profile to fluconazole, voriconazole and MXP-4509 of 551 clinical yeast isolates from a Romanian multi-centre study. Eur J Clin Microbiol Infect Dis 34, 367–383 (2015). https://doi.org/10.1007/s10096-014-2240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2240-6

Keywords

Navigation