Skip to main content
Log in

Discrimination of Aspergillus lentulus from Aspergillus fumigatus by Raman spectroscopy and MALDI-TOF MS

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

In 2005, a new sibling species of Aspergillus fumigatus was discovered: Aspergillus lentulus. Both species can cause invasive fungal disease in immune-compromised patients. The species are morphologically very similar. Current techniques for identification are PCR-based or morphology-based. These techniques are labour-intense and not sufficiently discriminatory. Since A. lentulus is less susceptible to several antifungal agents, it is important to correctly identify the causative infectious agent in order to optimize antifungal therapy. In this study we determined whether Raman spectroscopy and/or MALDI-TOF MS were able to differentiate between A. lentulus and A. fumigatus. For 16 isolates of A. lentulus and 16 isolates of A. fumigatus, Raman spectra and peptide profiles were obtained using the Spectracell and MALDI-TOF MS (VITEK MS RUO, bioMérieux) respectively. In order to obtain reliable Raman spectra for A. fumigatus and A. lentulus, the culture medium needed to be adjusted to obtain colourless conidia. Only Raman spectra obtained from colourless conidia were reproducible and correctly identified 25 out of 32 (78 %) of the Aspergillus strains. For VITEK MS RUO, no medium adjustments were necessary. Pigmented conidia resulted in reproducible peptide profiles as well in this case. VITEK MS RUO correctly identified 100 % of the Aspergillus isolates, within a timeframe of approximately 54 h including culture. Of the two techniques studied here, VITEK MS RUO was superior to Raman spectroscopy in the discrimination of A. lentulus from A. fumigatus. VITEK MS RUO seems to be a successful technique in the daily identification of Aspergillus spp. within a limited timeframe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fera MT, La Camera E, De Sarro A (2009) New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Rev Anti Infect Ther 7:981–998

    Article  CAS  PubMed  Google Scholar 

  2. Ameen M (2010) Epidemiology of superficial fungal infections. Clin Dermatol 28:197–201

    Article  PubMed  Google Scholar 

  3. Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53

    Article  PubMed  Google Scholar 

  4. Vazquez JA (2010) Invasive fungal infections in the intensive care unit. Semin Respir Crit Care Med 31:79–86

    Article  PubMed  Google Scholar 

  5. De Hoog GS, Cuarro GJ, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. ASM Press, Washington DC

    Google Scholar 

  6. Balajee SA, Nickle D, Varga J, Marr KA (2006) Molecular studies reveal frequent misidentification of Aspergillus fumigatus by morphotyping. Eukaryot Cell 5:1705–1712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA (2005) Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell 4:625–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Mellado E, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL (2011) Role of Aspergillus lentulus 14-alpha sterol demethylase (Cyp51A) in azole drug susceptibility. Antimicrob Agents Chemother 55:5459–5468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Balajee SA, Weaver M, Imhof A, Gribskov J, Marr KA (2004) Aspergillus fumigatus variant with decreased susceptibility to multiple antifungals. Antimicrob Agents Chemother 48:1197–1203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL (2008) Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother 52:1244–1251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Van de Sande WW, Mathot RA, ten Kate MT, van Vianen W, Tavakol M, Rijnders BJ, Bakker-Woudenberg IA (2005) Combination therapy of advanced invasive pulmonary aspergillosis in transiently neutropenic rats using human pharmacokinetic equivalent doses of voriconazole and anidulafungin. Antimicrob Agents Chemother 53:2005–2013

    Article  Google Scholar 

  12. Willemse-Erix DF, Scholtes-Timmerman MJ, Jachtenberg JW, van Leeuwen WB, Horst-Kreft D, Bakker Schut TC, Deurenberg RH, Puppels GJ, van Belkum A, Vos MC, Maquelin K (2009) Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol 47:652–659

    Article  PubMed Central  PubMed  Google Scholar 

  13. Buijtels PC, Willemse-Erix HF, Petit PL, Endtz HP, Puppels GJ, Verbrugh HA, van Belkum A, van Soolingen D, Maquelin K (2008) Rapid identification of mycobacteria by Raman spectroscopy. J Clin Microbiol 46:961–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hettick JM, Green BJ, Buskirk AD, Kashon ML, Slaven JE, Janotka E, Blachere FM, Schmechel D, Beezhold DH (2008) Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Anal Biochem 380:276–281

    Article  CAS  PubMed  Google Scholar 

  15. Bille E, Dauphin B, Leto J, Bougnoux ME, Beretti JL, Lotz A, Suarez S, Meyer J, Join-Lambert O, Descamps P, Grall N, Mory F, Dubreuil L, Berche P, Nassif X, Ferroni A (2012) MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts. Aspergillus spp. and positive blood cultures. Clin Microbiol Infect 18:1117–1125

    Article  CAS  PubMed  Google Scholar 

  16. Del Chierico F, Masotti A, Onori M, Fiscarelli E, Mancinelli L, Ricciotti G, Alghisi F, Dimiziani L, Manetti C, Urbani A, Muraca M, Putignani L (2012) MALDI-TOF MS proteomic phenotyping of filamentous and other fungi from clinical origin. J Proteomics 75:3314–3330

    Article  PubMed  Google Scholar 

  17. Ray AC, Eakin RE (1975) Studies on the biosynthesis of aspergillin by Aspergillus niger. Appl Microbiol 30:909–915

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Buskirk AD, Hettick JM, Chipinda I, Law BF, Siegel PD, Slaven JE, Green BJ, Beezhold DH (2011) Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal Biochem 411:122–128

    Article  CAS  PubMed  Google Scholar 

  19. Bernardo K, Pakulat N, Macht M, Krut O, Seifert H, Fleer S, Hünger F, Krönke M (2002) Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2:747–753

    Article  CAS  PubMed  Google Scholar 

  20. Arnold RJ, Karty JA, Ellington AD, Reilly JP (1999) Monitoring the growth of a bacteria culture by MALDI-MS of whole cells. Anal Chem 71:1990–1996

    Article  CAS  PubMed  Google Scholar 

  21. Alanio A, Beretti JL, Dauphin B, Mellado E, Quesne G, Lacroix C, Amara A, Berche P, Nassif X, Bougnoux ME (2011) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin Microbiol Infect 17:750–755

    Article  CAS  PubMed  Google Scholar 

  22. Pinel C, Arlotto M, Issartel JP, Berger F, Pelloux H, Grillot R, Symoens F (2011) Comparative proteomic profiles of Aspergillus fumigatus and Aspergillus lentulus strains by surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). BMC Microbiol 11:172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Araujo R, Amorim A, Gusmao L (2012) Diversity and specificity of microsatellites within Aspergillus section Fumigati. BMC microbiol 12:154

    Google Scholar 

  24. Serrano R, Gusmao L, Amorim A, Araujo R (2011) Rapid identification of Aspergillus fumigatus within the section Fumigati. BMC microbiol 11:82

    Google Scholar 

  25. Etienne KA, Kano R, Balajee SA (2009) Development and validation of a microsphere-based Luminex assay for rapid identification of clinically relevant aspergilli. J Clin Microbiol 47:1096–100

    Google Scholar 

  26. Balajee SA, Kano R, Baddley JW, Moser SA, Marr KA, Alexander BD Andes D, Kontoyiannis DP, Perrone G, Peterson S, Brandt ME, Pappas PG and Chiller T (2009) Molecular identification of Aspergillus species: Transplant Associated Infection Surveillance Network (TRANSNET). J Clin Microbiol 47:3138–3141

    Google Scholar 

  27. Buess M, Cathomas G, Halter J, Junker L, Grendelmeier P, Tamm M, Stolz D (2012) Aspergillus-PCR in bronchoalveolar lavage for detection of invasive pulmonary aspergillosis in immunocompromised patients. BMC Infect Dis 12:237

    Google Scholar 

Download references

Conflict of interest

AB, VG and VM are employees of BioMérieux. None of them had any influence on the outcome of experiments or on the interpretation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. B. Verwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verwer, P.E.B., van Leeuwen, W.B., Girard, V. et al. Discrimination of Aspergillus lentulus from Aspergillus fumigatus by Raman spectroscopy and MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 33, 245–251 (2014). https://doi.org/10.1007/s10096-013-1951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1951-4

Keywords

Navigation