Skip to main content

Advertisement

Log in

Evaluation of species-specific PCR, Bruker MS, VITEK MS and the VITEK 2 system for the identification of clinical Enterococcus isolates

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this investigation was to compare the performance of species-specific polymerase chain reaction (PCR), matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and phenotypic identification systems for the identification of Enterococcus species. A total of 132 clinical isolates were investigated by the following: (1) a multiplex real-time PCR assay targeting ddl Enterococcus faecium, ddl Enterococcus faecalis, vanC1 and vanC2/C3 genes, and a high-resolution melting (HRM) analysis of the groESL gene for the differentiation of Enterococcus casseliflavus and Enterococcus gallinarum; (2) Bruker MS; (3) VITEK MS; and (4) the VITEK 2 system. 16S rRNA gene sequencing was used as a reference method in the study. The 132 isolates were identified as 32 E. faecalis, 63 E. faecium, 16 E. casseliflavus and 21 E. gallinarum. The multiplex PCR, Bruker MS and VITEK MS were able to identify all the isolates correctly at the species level. The VITEK 2 system could identify 131/132 (99.2 %) and 121/132 (91.7 %) of the isolates at the genus and species levels, respectively. The HRM-groESL assay identified all (21/21) E. gallinarum isolates and 81.3 % (13/16) of the E. casseliflavus isolates. The PCR methods described in the present study are effective in identifying the enterococcal species. MALDI-TOF MS is a rapid, reliable and cost-effective identification technique for enterococci. The VITEK 2 system is less efficient at detecting non-faecalis and non-faecium Enterococcus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan CK, Lai CC, Wang JY, Lin SH, Liao CH, Huang YT, Wang CY, Lin HI, Hsueh PR (2010) Bacteremia caused by non-faecalis and non-faecium Enterococcus species at a Medical center in Taiwan, 2000 to 2008. J Infect 61(1):34–43

    Article  PubMed  Google Scholar 

  2. Na S, Park HJ, Park KH, Cho OH, Chong YP, Kim SH, Lee SO, Sung H, Kim MN, Jeong JY, Kim YS, Woo JH, Choi SH (2012) Enterococcus avium bacteremia: a 12-year clinical experience with 53 patients. Eur J Clin Microbiol Infect Dis 31(3):303–310

    Article  PubMed  CAS  Google Scholar 

  3. Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (2007) Manual of clinical microbiology. American Society for Microbiology Press, Washington, DC, pp 430–442

    Google Scholar 

  4. Boyle JF, Soumakis SA, Rendo A, Herrington JA, Gianarkis DG, Thurberg BE, Painter BG (1993) Epidemiologic analysis and genotypic characterization of a nosocomial outbreak of vancomycin-resistant enterococci. J Clin Microbiol 31(5):1280–1285

    PubMed  CAS  Google Scholar 

  5. Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN (2007) Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 58(2):163–170

    Article  PubMed  CAS  Google Scholar 

  6. Low DE, Keller N, Barth A, Jones RN (2001) Clinical prevalence, antimicrobial susceptibility, and geographic resistance patterns of enterococci: results from the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32(Suppl 2):S133–S145

    Article  PubMed  CAS  Google Scholar 

  7. Singer DA, Jochimsen EM, Gielerak P, Jarvis WR (1996) Pseudo-outbreak of Enterococcus durans infections and colonization associated with introduction of an automated identification system software update. J Clin Microbiol 34(11):2685–2687

    PubMed  CAS  Google Scholar 

  8. Tsakris A, Woodford N, Pournaras S, Kaufmann M, Douboyas J (1998) Apparent increased prevalence of high-level aminoglycoside-resistant Enterococcus durans resulting from false identification by a semiautomated software system. J Clin Microbiol 36(5):1419–1421

    PubMed  CAS  Google Scholar 

  9. Angeletti S, Lorino G, Gherardi G, Battistoni F, De Cesaris M, Dicuonzo G (2001) Routine molecular identification of enterococci by gene-specific PCR and 16S ribosomal DNA sequencing. J Clin Microbiol 39(2):794–797

    Article  PubMed  CAS  Google Scholar 

  10. Dutka-Malen S, Evers S, Courvalin P (1995) Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol 33(1):24–27

    PubMed  CAS  Google Scholar 

  11. Tsai JC, Hsueh PR, Lin HM, Chang HJ, Ho SW, Teng LJ (2005) Identification of clinically relevant Enterococcus species by direct sequencing of groES and spacer region. J Clin Microbiol 43(1):235–241

    Article  PubMed  CAS  Google Scholar 

  12. Bizzini A, Greub G (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16(11):1614–1619

    Article  PubMed  CAS  Google Scholar 

  13. Benagli C, Rossi V, Dolina M, Tonolla M, Petrini O (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS One 6(1):e16424

    Article  PubMed  CAS  Google Scholar 

  14. Jin WY, Jang SJ, Lee MJ, Park G, Kim MJ, Kook JK, Kim DM, Moon DS, Park YJ (2011) Evaluation of VITEK 2, MicroScan, and Phoenix for identification of clinical isolates and reference strains. Diagn Microbiol Infect Dis 70(4):442–447

    Article  PubMed  Google Scholar 

  15. Cha CH, An HK, Kim JU (2010) Detection of vancomycin-resistant enterococci using multiplex real-time PCR assay and melting curve analysis. Korean J Lab Med 30(2):138–146

    Article  PubMed  CAS  Google Scholar 

  16. Harmsen D, Rothgänger J, Frosch M, Albert J (2002) RIDOM: Ribosomal Differentiation of Medical Micro-organisms Database. Nucleic Acids Res 30(1):416–417

    Article  PubMed  CAS  Google Scholar 

  17. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75(10):4801–4805

    Article  PubMed  CAS  Google Scholar 

  18. Fang H, Ohlsson AK, Jiang GX, Ullberg M (2012) Screening for vancomycin-resistant enterococci: an efficient and economical laboratory-developed test. Eur J Clin Microbiol Infect Dis 31(3):261–265

    Article  PubMed  CAS  Google Scholar 

  19. Fang H, Nord CE, Ullberg M (2010) Screening for vancomycin-resistant enterococci: results of a survey in Stockholm. APMIS 118(5):413–417

    Article  PubMed  CAS  Google Scholar 

  20. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29(11):996–1011

    Article  PubMed  Google Scholar 

  21. Zhu X, Zheng B, Wang S, Willems RJ, Xue F, Cao X, Li Y, Bo S, Liu J (2009) Molecular characterisation of outbreak-related strains of vancomycin-resistant Enterococcus faecium from an intensive care unit in Beijing, China. J Hosp Infect 72(2):147–154

    Article  PubMed  CAS  Google Scholar 

  22. Willems RJ, Top J, van Santen M, Robinson DA, Coque TM, Baquero F, Grundmann H, Bonten MJ (2005) Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis 11(6):821–828

    Article  PubMed  CAS  Google Scholar 

  23. Hsieh YC, Lee WS, Ou TY, Hsueh PR (2010) Clonal spread of CC17 vancomycin-resistant Enterococcus faecium with multilocus sequence type 78 (ST78) and a novel ST444 in Taiwan. Eur J Clin Microbiol Infect Dis 29(1):25–30

    Article  PubMed  CAS  Google Scholar 

  24. Tyrrell GJ, Turnbull L, Teixeira LM, Lefebvre J, Carvalho Mda G, Facklam RR, Lovgren M (2002) Enterococcus gilvus sp. nov. and Enterococcus pallens sp. nov. isolated from human clinical specimens. J Clin Microbiol 40(4):1140–1145

    Article  PubMed  Google Scholar 

  25. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49(4):543–551

    Article  PubMed  CAS  Google Scholar 

  26. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48(4):1169-1175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ellinor Thidholm for her assistance in the MALDI-TOF experiments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, H., Ohlsson, AK., Ullberg, M. et al. Evaluation of species-specific PCR, Bruker MS, VITEK MS and the VITEK 2 system for the identification of clinical Enterococcus isolates. Eur J Clin Microbiol Infect Dis 31, 3073–3077 (2012). https://doi.org/10.1007/s10096-012-1667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1667-x

Keywords

Navigation