Skip to main content
Log in

Volatile organic compound analysis by ion molecule reaction mass spectrometry for Gram-positive bacteria differentiation

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Approximately 50 % of all clinically proven infections in critically ill patients are caused by Gram-positive bacteria. The timely and appropriate treatment of these infections is vital in order to avoid negative outcomes. Hence, fast and reliable methods are needed for the early detection and identification of microorganisms. Recently, direct mass spectrometry-based analysis of volatile organic compounds emitted by microorganisms has been employed to study Gram-negative bacteria. Here, we report a feasibility study of ion molecule reaction mass spectrometry (IMR-MS) for in vitro growth detection and species differentiation of selected Gram-positive bacteria that are frequently isolated in blood culture samples, namely, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, and Staphylococcus epidermidis. Ion molecule reaction mass spectrometry was used to analyze the headspace above cultures containing Gram-positive bacteria incubated at 37 °C starting with 102 colony-forming units (CFU)/ml. Measurements to determine the presence of volatile organic compounds were performed 4, 8, and 24 h after incubation, respectively. The detection of microbial growth was accomplished already after 8 h in cultures containing E. faecalis. After 24 h of incubation, characteristic mass spectra were obtained for all species. Processing these mass spectra by hierarchic clustering and principal component analysis (PCA) enabled us to differentiate between bacterial species. IMR‐MS in conjunction with a cumulative end-point model provides the means for rapid growth detection and differentiation of Gram-positive bacteria on the species level, typically within an analysis time of less than 3 min per sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29(7):1303–1310

    Article  PubMed  CAS  Google Scholar 

  2. Brun-Buisson C, Meshaka P, Pinton P, Vallet B; EPISEPSIS Study Group (2004) EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 30(4):580–588

    Article  PubMed  CAS  Google Scholar 

  3. Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, Gruendling M, Huhle G, Jaschinski U, John S, Mayer K, Oppert M, Olthoff D, Quintel M, Ragaller M, Rossaint R, Stuber F, Weiler N, Welte T, Bogatsch H, Hartog C, Loeffler M, Reinhart K (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33(4):606–618

    Article  PubMed  Google Scholar 

  4. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348(16):1546–1554

    Article  PubMed  Google Scholar 

  5. Retamar P, Portillo MM, López-Prieto MD, Rodríguez-López F, de Cueto M, García MV, Gómez MJ, Del Arco A, Muñoz A, Sánchez-Porto A, Torres-Tortosa M, Martín-Aspas A, Arroyo A, García-Figueras C, Acosta F, Corzo JE, León-Ruiz L, Escobar-Lara T, Rodríguez-Baño J; SAEI/SAMPAC Bacteremia Group (2012) Impact of inadequate empirical therapy on the mortality of patients with bloodstream infections: a propensity score-based analysis. Antimicrob Agents Chemother 56(1):472–478

    Article  PubMed  CAS  Google Scholar 

  6. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Kumar A, Simon D, Peters C, Ahsan M, Chateau D; Cooperative Antimicrobial Therapy of Septic Shock Database Research Group (2009) Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136(5):1237–1248

    Article  PubMed  Google Scholar 

  7. Bassetti M, Ginocchio F, Giacobbe DR (2011) New approaches for empiric therapy in Gram-positive sepsis. Minerva Anestesiol 77(8):821–827

    PubMed  CAS  Google Scholar 

  8. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842

    Article  PubMed  CAS  Google Scholar 

  9. Mann S (1966) Über den Geruchsstoff von Pseudomonas aeruginosa. Arch Mikrobiol 54(2):184–190

    Article  CAS  Google Scholar 

  10. Cox CD, Parker J (1979) Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa. J Clin Microbiol 9(4):479–484

    PubMed  CAS  Google Scholar 

  11. Labows JN, McGinley KJ, Webster GF, Leyden JJ (1980) Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography–mass spectrometry. J Clin Microbiol 12(4):521–526

    PubMed  CAS  Google Scholar 

  12. Julák J, Stránská E, Procházková-Francisci E, Rosová V (2000) Blood cultures evaluation by gas chromatography of volatile fatty acids. Med Sci Monit 6(3):605–610

    PubMed  Google Scholar 

  13. Probert CS, Jones PR, Ratcliffe NM (2004) A novel method for rapidly diagnosing the causes of diarrhoea. Gut 53(1):58–61

    Article  PubMed  CAS  Google Scholar 

  14. Allardyce RA, Langford VS, Hill AL, Murdoch DR (2006) Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). J Microbiol Methods 65(2):361–365

    Article  PubMed  CAS  Google Scholar 

  15. Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Märk TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74(7):2179–2186

    Article  PubMed  CAS  Google Scholar 

  16. Chippendale TW, Španěl P, Smith D (2011) Time-resolved selected ion flow tube mass spectrometric quantification of the volatile compounds generated by E. coli JM109 cultured in two different media. Rapid Commun Mass Spectrom 25(15):2163–2172

    Article  PubMed  CAS  Google Scholar 

  17. O’Hara M, Mayhew CA (2009) A preliminary comparison of volatile organic compounds in the headspace of cultures of Staphylococcus aureus grown in nutrient, dextrose and brain heart bovine broths measured using a proton transfer reaction mass spectrometer. J Breath Res 3(2):027001

    Article  PubMed  Google Scholar 

  18. Thorn RM, Reynolds DM, Greenman J (2011) Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J Microbiol Methods 84(2):258–264

    Article  PubMed  CAS  Google Scholar 

  19. Zhu J, Bean HD, Kuo YM, Hill JE (2010) Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. J Clin Microbiol 48(12):4426–4431

    Article  PubMed  CAS  Google Scholar 

  20. Critchley A, Elliott TS, Harrison G, Mayhew CA, Thompson JM, Worthington T (2004) The proton transfer reaction mass spectrometer and its use in medical science: applications to drug assays and the monitoring of bacteria. Int J Mass Spectrom 239(2–3):235–241

    CAS  Google Scholar 

  21. Dolch ME, Frey L, Hornuss C, Schmoelz M, Praun S, Villinger J, Schelling G (2008) Molecular breath-gas analysis by online mass spectrometry in mechanically ventilated patients: a new software-based method of CO2-controlled alveolar gas monitoring. J Breath Res 2(3):037010

    Article  PubMed  CAS  Google Scholar 

  22. Hornuss C, Praun S, Villinger J, Dornauer A, Moehnle P, Dolch M, Weninger E, Chouker A, Feil C, Briegel J, Thiel M, Schelling G (2007) Real-time monitoring of propofol in expired air in humans undergoing total intravenous anesthesia. Anesthesiology 106(4):665–674

    Article  PubMed  CAS  Google Scholar 

  23. Netzer M, Millonig G, Osl M, Pfeifer B, Praun S, Villinger J, Vogel W, Baumgartner C (2009) A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry. Bioinformatics 25(7):941–947

    Article  PubMed  CAS  Google Scholar 

  24. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.

  25. Bruins M, Bos A, Petit PL, Eadie K, Rog A, Bos R, van Ramshorst GH, van Belkum A (2009) Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor. Eur J Clin Microbiol Infect Dis 28(7):775–780

    Article  PubMed  CAS  Google Scholar 

  26. Scotter JM, Allardyce RA, Langford VS, Hill A, Murdoch DR (2006) The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry (SIFT-MS) and comparison with the BacT/ALERT automated blood culture system. J Microbiol Methods 65(3):628–631

    Article  PubMed  CAS  Google Scholar 

  27. Schulz S, Fuhlendorff J, Reichenbach H (2004) Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60(17):3863–3872

    Article  CAS  Google Scholar 

  28. Amann A, Spanĕl P, Smith D (2007) Breath analysis: the approach towards clinical applications. Mini Rev Med Chem 7(2):115–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Kirsten Weinert for her excellent technical assistance during the study period. Avacta/Oxford Medical Diagnostics Ltd. provided financial support and V&F Medical Development GmbH provided the mass spectrometry system.

Conflict of interest

M.E.D. received an indirect research grant from Avacta/Oxford Medical Diagnostics Ltd. V&F reimbursed the travel expenses of M.E.D. and C.H. to the ASA annual meetings and the German Anaesthesia Congress 2006–2010. S.P. is a scientist employed by V&F. J.V. is the owner of V&F. W.D. is a scientist employed by Oxford Medical Diagnostics Ltd. C.K., G.S., and S.S. have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Dolch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolch, M.E., Hornuss, C., Klocke, C. et al. Volatile organic compound analysis by ion molecule reaction mass spectrometry for Gram-positive bacteria differentiation. Eur J Clin Microbiol Infect Dis 31, 3007–3013 (2012). https://doi.org/10.1007/s10096-012-1654-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1654-2

Keywords

Navigation