Skip to main content

Rapid and Comprehensive Identification of Nontuberculous Mycobacteria

  • Protocol
  • First Online:
Nanopore Sequencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2632))

Abstract

Next-generation sequencing is a powerful tool to accurately identify pathogens. The MinION sequencer is best suited for the rapid identification of bacterial species due to its real-time sequence output. In this chapter, we introduce a method to identify nontuberculous mycobacteria (NTM) in one sequencing analysis from culture isolates using the MinION sequencer. NTM disease is now recognized as a growing global health concern due to its increasing incidence and prevalence. There are over 200 NTM species, of which the major pathogens are further classified into many subspecies showing different antibiotic susceptibilities. Therefore, identifying the pathogens at the subspecies level of NTM is necessary to select an appropriate treatment regimen. The protocol described here includes DNA extraction by lysis using silica beads, library preparation, sequencing by the MinION sequencer, and analysis of multilocus sequence typing using the software “mlstverse” and enables rapid and comprehensive identification of 175 species of NTM at the subspecies level with high sensitivity and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gardy JL, Loman NJ (2018) Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet 19:9–20

    Article  CAS  PubMed  Google Scholar 

  2. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  3. Plesivkova D, Richards R, Harbison S (2019) A review of the potential of the MinION™ single-molecule sequencing system for forensic applications. WIREs Forensic Sci 1:e1323

    Article  Google Scholar 

  4. Henkle E, Hedberg K, Schafer S et al (2015) Population-based incidence of pulmonary nontuberculous mycobacterial disease in Oregon 2007 to 2012. Ann Am Thorac Soc 12:642–647

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee H, Myung W, Koh W-J et al (2019) Epidemiology of nontuberculous mycobacterial infection, South Korea, 2007–2016. Emerg Infect Dis 25:569–572

    Article  PubMed  PubMed Central  Google Scholar 

  6. Namkoong H, Kurashima A, Morimoto K et al (2016) Epidemiology of pulmonary nontuberculous mycobacterial disease, Japan. Emerg Infect Dis 22:1116–1117

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoefsloot W, van Ingen J, Andrejak C et al (2013) The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J 42:1604–1613

    Article  PubMed  Google Scholar 

  8. Smith GS, Ghio AJ, Stout JE et al (2016) Epidemiology of nontuberculous mycobacteria isolations among central North Carolina residents, 2006–2010. J Infect 72:678–686

    Article  PubMed  Google Scholar 

  9. Dahl JL, Iii GW, Tran PM et al (2019) Mycolicibacterium nivoides sp. nov isolated from a peat bog. Int J Syst Evol Microbiol 71:004438

    Article  PubMed  Google Scholar 

  10. Nouioui I, Sangal V, Cortés-Albayay C et al (2019) Mycolicibacterium stellerae sp. nov., a rapidly growing scotochromogenic strain isolated from Stellera chamaejasme. Int J Syst Evol Microbiol 69:3465–3471

    Article  CAS  PubMed  Google Scholar 

  11. Abe Y, Fukushima K, Matsumoto Y et al (2022) Mycobacterium senriense sp. nov., a slowly growing, non-scotochromogenic species, isolated from sputum of an elderly man. Int J Syst Evol Microbiol 72:005378

    Article  CAS  Google Scholar 

  12. Liu G, Yu X, Luo J et al (2021) Mycobacterium vicinigordonae sp. nov., a slow-growing scotochromogenic species isolated from sputum. Int J Syst Evol Microbiol 71:004796

    Article  CAS  Google Scholar 

  13. Ghielmetti G, Rosato G, Trovato A et al (2021) Mycobacterium helveticum sp. nov., a novel slowly growing mycobacterial species associated with granulomatous lesions in adult swine. Int J Syst Evol Microbiol 71:004615

    Google Scholar 

  14. Cheng Y, Lei W, Wang X et al (2021) Mycolicibacterium baixiangningiae sp. nov. and Mycolicibacterium mengxianglii sp. nov., two new rapidly growing mycobacterial species. Int J Syst Evol Microbiol 71:005019

    Article  CAS  Google Scholar 

  15. Prevots DR, Marras TK (2015) Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med 36:13–34

    Article  PubMed  Google Scholar 

  16. Griffith DE, Aksamit T, Brown-Elliott BA et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. https://doi.org/10.1164/rccm.200604-571st

    Book  Google Scholar 

  17. Philley JV, Griffith DE (2019) Medical management of pulmonary nontuberculous mycobacterial disease. Thorac Surg Clin 29:65–76

    Article  PubMed  Google Scholar 

  18. Uchiya K-I, Asahi S, Futamura K et al (2018) Antibiotic susceptibility and genotyping of mycobacterium avium strains that cause pulmonary and disseminated infection. Antimicrob Agents Chemother 62:e02035–e02017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maurer FP, Castelberg C, Quiblier C et al (2014) Erm(41)-dependent inducible resistance to azithromycin and clarithromycin in clinical isolates of Mycobacterium abscessus. J Antimicrob Chemother 69:1559–1563

    Article  CAS  PubMed  Google Scholar 

  20. Griffith DE, Brown-Elliott BA, Benwill JL et al (2015) Mycobacterium abscessus. “Pleased to Meet You, Hope You Guess My Name...”. Ann Am Thorac Soc 12:436–439

    Article  PubMed  Google Scholar 

  21. Claydon MA, Davey SN, Edwards-Jones V et al (1996) The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14:1584–1586

    Article  CAS  PubMed  Google Scholar 

  22. Jannetto PJ, Fitzgerald RL (2016) Effective use of mass spectrometry in the clinical laboratory. Clin Chem 62:92–98

    Article  CAS  PubMed  Google Scholar 

  23. Enright MC, Spratt BG (1999) Multilocus sequence typing. Trends Microbiol 7:482–487

    Article  CAS  PubMed  Google Scholar 

  24. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    Article  CAS  Google Scholar 

  25. Matsumoto Y, Kinjo T, Motooka D et al (2019) Comprehensive subspecies identification of 175 nontuberculous mycobacteria species based on 7547 genomic profiles. Emerg Microbes Infect 8:1043–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oren A, Garrity GM (2019) Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 69:13–32

    Article  PubMed  Google Scholar 

  27. Conover WJ (1999) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  28. Lander ES, Waterman MS (1988) Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2:231–239

    Article  CAS  PubMed  Google Scholar 

  29. Wendl MC (2006) Occupancy modeling of coverage distribution for whole genome shotgun DNA sequencing. Bull Math Biol 68:179–196

    Article  CAS  PubMed  Google Scholar 

  30. de Torrenté L, Zimmerman S, Suzuki M et al (2020) The shape of gene expression distributions matter: how incorporating distribution shape improves the interpretation of cancer transcriptomic data. BMC Bioinformatics 21:562

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hooper SD, Dalevi D, Pati A et al (2010) Estimating DNA coverage and abundance in metagenomes using a gamma approximation. Bioinformatics 26:295–301.32

    Article  CAS  PubMed  Google Scholar 

  32. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matsumoto, Y., Nakamura, S. (2023). Rapid and Comprehensive Identification of Nontuberculous Mycobacteria. In: Arakawa, K. (eds) Nanopore Sequencing. Methods in Molecular Biology, vol 2632. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2996-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2996-3_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2995-6

  • Online ISBN: 978-1-0716-2996-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics