Skip to main content

Advertisement

Log in

Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The Burkholderia cepacia complex (Bcc) is a group of ten closely related species associated with life-threatening infection in cystic fibrosis (CF). These bacteria are highly antibiotic resistant, with some strains transmissible, and in a subgroup of patients, they can cause a rapid and fatal necrotising pneumonia. The Bcc organisms produce a range of exoproducts with virulence potential, including exopolysaccharide, proteases and lipases. Many members of the Bcc are also capable of epithelial cell invasion, although the mechanism(s) involved are poorly understood. This study investigates a role for Bcc lipase in epithelial cell invasion by Bcc strains. Lipase activity was measured in eight species of the Bcc. Strains that produced high levels of lipase were predominantly from the B. multivorans and B. cenocepacia species. Pre-treatment of two epithelial cell lines with Bcc lipase significantly increased invasion by two B. multivorans strains and one B. cenocepacia strain and did not affect either plasma membrane or tight junction integrity. Inhibition of Bcc lipase production by the lipase inhibitor Orlistat significantly decreased invasion by both B. multivorans and B. cenocepacia strains in a concentration-dependent manner. This study demonstrates the extent of lipase production across the Bcc and establishes a potential role for lipase in Bcc epithelial cell invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. LiPuma JJ, Spilker T, Gill LH, Campbell PW 3rd, Liu L, Mahenthiralingam E (2001) Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164:92–96

    PubMed  CAS  Google Scholar 

  2. Speert DP (2002) Advances in Burkholderia cepacia complex. Paediatr Respir Rev 3:230–235

    Article  PubMed  Google Scholar 

  3. Mahenthiralingam E, Baldwin A, Vandamme P (2002) Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51:533–538

    PubMed  Google Scholar 

  4. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156

    Article  PubMed  CAS  Google Scholar 

  5. Govan JR, Brown PH, Maddison J, Doherty CJ, Nelson JW, Dodd M, Greening AP, Webb AK (1993) Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342:15–19

    Article  PubMed  CAS  Google Scholar 

  6. LiPuma JJ, Dasen SE, Nielson DW, Stern RC, Stull TL (1990) Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 336:1094–1096

    Article  PubMed  CAS  Google Scholar 

  7. Johnson WM, Tyler SD, Rozee KR (1994) Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol 32:924–930

    PubMed  CAS  Google Scholar 

  8. Chernish RN, Aaron SD (2003) Approach to resistant gram-negative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opin Pulm Med 9:509–515

    Article  PubMed  Google Scholar 

  9. Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L, Belli ML, Piana S, Materazzo A, Vandamme P, Manno G (2002) Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: genomovar status and distribution of traits related to virulence and transmissibility. J Clin Microbiol 40:846–851

    Article  PubMed  Google Scholar 

  10. Corbett CR, Burtnick MN, Kooi C, Woods DE, Sokol PA (2003) An extracellular zinc metalloprotease gene of Burkholderia cepacia. Microbiology 149:2263–2271

    Article  PubMed  CAS  Google Scholar 

  11. Sist P, Cescutti P, Skerlavaj S, Urbani R, Leitao JH, Sa-Correia I, Rizzo R (2003) Macromolecular and solution properties of Cepacian: the exopolysaccharide produced by a strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydr Res 338:1861–1867

    Article  PubMed  CAS  Google Scholar 

  12. Chung JW, Altman E, Beveridge TJ, Speert DP (2003) Colonial morphology of Burkholderia cepacia complex genomovar III: implications in exopolysaccharide production, pilus expression, and persistence in the mouse. Infect Immun 71:904–909

    Article  PubMed  CAS  Google Scholar 

  13. Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C (1999) Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N(5)-oxygenase. Infect Immun 67:4443–4455

    PubMed  CAS  Google Scholar 

  14. Visser MB, Majumdar S, Hani E, Sokol PA (2004) Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun 72:2850–2857

    Article  PubMed  CAS  Google Scholar 

  15. Hutchison ML, Poxton IR, Govan JR (1998) Burkholderia cenocepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun 66:2033–2039

    PubMed  CAS  Google Scholar 

  16. Straus DC, Lonon MK, Hutson JC (1992) Inhibition of rat alveolar macrophage phagocytic function by a Pseudomonas cepacia lipase. J Med Microbiol 37:335–340

    PubMed  CAS  Google Scholar 

  17. Allison DG, Goldsbrough MJ (1994) Polysaccharide production in Pseudomonas cepacia. J Basic Microbiol 34:3–10

    PubMed  CAS  Google Scholar 

  18. Berka RM, Gray GL, Vasil ML (1981) Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa. Infect Immun 34:1071–1074

    PubMed  CAS  Google Scholar 

  19. Vasil ML, Krieg DP, Kuhns JS, Ogle JW, Shortridge VD, Ostroff RM, Vasil AI (1990) Molecular analysis of hemolytic and phospholipase C activities of Pseudomonas cepacia. Infect Immun 58:4020–4029

    PubMed  CAS  Google Scholar 

  20. McKenney D, Allison DG (1995) Effects of growth rate and nutrient limitation on virulence factor production in Burkholderia cepacia. J Bacteriol 177:4140–4143

    PubMed  CAS  Google Scholar 

  21. McKevitt AI, Woods DE (1984) Characterization of Pseudomonas cepacia isolates from patients with cystic fibrosis. J Clin Microbiol 19:291–293

    PubMed  CAS  Google Scholar 

  22. Lonon MK, Woods DE, Straus DC (1988) Production of lipase by clinical isolates of Pseudomonas cepacia. J Clin Microbiol 26:979–984

    PubMed  CAS  Google Scholar 

  23. Stehr F, Kretschmar M, Kroger C, Hube B, Schafer W (2003) Microbial lipases as virulence factors. J Mol Catalysis B Enzymatic 22:347–355

    Article  CAS  Google Scholar 

  24. Slomiany BL, Kasinathan C, Slomiany A (1989) Lipolytic activity ofCampylobacter pylori: effect of colloidal bismuth subcitrate (De-Nol). Am J Gastroenterol 84:1273–1277

    PubMed  CAS  Google Scholar 

  25. Piotrowski J, Czajkowski A, Yotsumoto F, Slomiany A, Slomiany BL (1994) Sulglycotide effect on the proteolytic and lipolytic activities of Helicobacter pylori toward gastric mucus. Am J Gastroenterol 89:232–236

    PubMed  CAS  Google Scholar 

  26. Burns JL, Jonas M, Chi EY, Clark DK, Berger A, Griffith A (1996) Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect Immun 64:4054–4059

    PubMed  CAS  Google Scholar 

  27. Martin DW, Mohr CD (2000) Invasion and intracellular survival of Burkholderia cepacia. Infect Immun 68:24–29

    PubMed  CAS  Google Scholar 

  28. Cieri MV, Mayer-Hamblett N, Griffith A, Burns JL (2002) Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect Immun 70:1081–1086

    Article  PubMed  CAS  Google Scholar 

  29. Chiu CH, Ostry A, Speert DP (2001) Invasion of murine respiratory epithelial cells in vivo by Burkholderia cepacia. J Med Microbiol 50:594–601

    PubMed  CAS  Google Scholar 

  30. Duff C, Murphy PG, Callaghan M, McClean S (2006) Differences in invasion and translocation of Burkholderia cepacia complex species in polarised lung epithelial cells in vitro. Microb Pathogenesis 41:183–192

    Article  CAS  Google Scholar 

  31. Tomich M, Herfst CA, Golden JW, Mohr CD (2002) Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun 70:1799–1806

    Article  PubMed  CAS  Google Scholar 

  32. Coenye T, Vandamme P, LiPuma JJ, Govan JR, Mahenthiralingam E (2003) Updated version of the Burkholderia cepacia complex experimental strain panel. J Clin Microbiol 41:2797–2798

    Article  PubMed  Google Scholar 

  33. Mahenthiralingam E, Coenye T, Chung JW, Speert DP, Govan JR, Taylor P, Vandamme P (2000) Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913

    PubMed  CAS  Google Scholar 

  34. Pratt J, Cooley JD, Purdy CW, Straus DC (2000) Lipase activity from strains of Pasteurella multocida. Curr Microbiol 40:306–309

    Article  PubMed  CAS  Google Scholar 

  35. Caraher E, Duff C, Mullen T, Mc Keon S, Murphy P, Callaghan M, McClean S (2007) Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans. J Cyst Fibros 6:49–56

    Article  PubMed  CAS  Google Scholar 

  36. Maher S, McClean S (2006) Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem Pharmacol 71:1289–1298

    Article  PubMed  CAS  Google Scholar 

  37. Ehrhardt C, Collnot EM, Baldes C, Becker U, Laue M, Kim KJ, Lehr CM (2006) Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o. Cell Tissue Res 323:405–415

    Article  PubMed  CAS  Google Scholar 

  38. Ehrhardt C, Kneuer C, Fiegel J, Hanes J, Schaefer UF, Kim KJ, Lehr CM (2002) Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o−: implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res 308:391–400

    Article  PubMed  CAS  Google Scholar 

  39. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880–885

    Article  PubMed  CAS  Google Scholar 

  40. Gilligan PH (1991) Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4:35–51

    PubMed  CAS  Google Scholar 

  41. Hadvary P, Lengsfeld H, Wolfer H (1988) Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J 256:357–361

    PubMed  CAS  Google Scholar 

  42. Ryding U, Renneberg J, Rollof J, Christensson B (1992) Antibody response to Staphylococcus aureus whole cell, lipase and staphylolysin in patients with S. aureus infections. FEMS Microbiol Immunol 4:105–110

    Article  PubMed  CAS  Google Scholar 

  43. Rollof J, Braconier JH, Soderstrom C, Nilsson-Ehle P (1988) Interference of Staphylococcus aureus lipase with human granulocyte function. Eur J Clin Microbiol Infect Dis 7:505–510

    Article  PubMed  CAS  Google Scholar 

  44. Gilchrist CA, Houpt E, Trapaidze N, Fei Z, Crasta O, Asgharpour A, Evans C, Martino-Catt S, Baba DJ, Stroup S, Hamano S, Ehrenkaufer G, Okada M, Singh U, Nozaki T, Mann BJ, Petri WA Jr (2006) Impact of intestinal colonization and invasion on the Entamoeba histolytica transcriptome. Mol Biochem Parasitol 147:163–176

    Article  PubMed  CAS  Google Scholar 

  45. Gottlich E, de Hoog GS, Yoshida S, Takeo K, Nishimura K, Miyaji M (1995) Cell-surface hydrophobicity and lipolysis as essential factors in human tinea nigra. Mycoses 38:489–494

    PubMed  CAS  Google Scholar 

  46. Miskin JE, Farrell AM, Cunliffe WJ, Holland KT (1997) Propionibacterium acnes, a resident of lipid-rich human skin, produces a 33 kDa extracellular lipase encoded by gehA. Microbiology 143:1745–1755

    Article  PubMed  CAS  Google Scholar 

  47. Davis CP, Avots-Avotins AE, Fader RC (1981) Evidence for a bladder cell glycolipid receptor for Escherichia coli and the effect of neuraminic acid and colominic acid on adherence. Infect Immun 34:944–948

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. Dieter Gruenert, California Pacific Medical Center Research Institute, San Francisco, CA for kindly providing us with the 16HBE14o− and CFBE41o− cell lines. In addition, we would like to thank Dr. Peter Vandamme at the Laboratory for Microbiology, Ghent University, Ghent Belgium for providing the Bcc strains. This work was funded by the Post-graduate R&D Skills Programme (PRDSP) and the Programme for Research in Third Level Institutions (PRTLI) administered by the Higher Education Authority (HEA), Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Callaghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullen, T., Markey, K., Murphy, P. et al. Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells. Eur J Clin Microbiol Infect Dis 26, 869–877 (2007). https://doi.org/10.1007/s10096-007-0385-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-007-0385-2

Keywords

Navigation