Skip to main content
Log in

Shape preservation of scientific data through rational fractal splines

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

Fractal interpolation is a modern technique in approximation theory to fit and analyze scientific data. We develop a new class of \(\mathcal C ^1\)- rational cubic fractal interpolation functions, where the associated iterated function system uses rational functions of the form \(\frac{p_i(x)}{q_i(x)},\) where \(p_i(x)\) and \(q_i(x)\) are cubic polynomials involving two shape parameters. The rational cubic iterated function system scheme provides an additional freedom over the classical rational cubic interpolants due to the presence of the scaling factors and shape parameters. The classical rational cubic functions are obtained as a special case of the developed fractal interpolants. An upper bound of the uniform error of the rational cubic fractal interpolation function with an original function in \(\mathcal C ^2\) is deduced for the convergence results. The rational fractal scheme is computationally economical, very much local, moderately local or global depending on the scaling factors and shape parameters. Appropriate restrictions on the scaling factors and shape parameters give sufficient conditions for a shape preserving rational cubic fractal interpolation function so that it is monotonic, positive, and convex if the data set is monotonic, positive, and convex, respectively. A visual illustration of the shape preserving fractal curves is provided to support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach. 17, 589–602 (1970)

    Article  MATH  Google Scholar 

  2. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barnsley, M.F.: Fractals Everywhere. Academic Press, Orlando (1988)

    MATH  Google Scholar 

  4. Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory. 57, 14–34 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beliakov, G.: Monotonicity preserving approximation of multivariate scattered data. BIT 45(4), 653–677 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chand, A.K.B., Navascués, M.A.: Generalized Hermite fractal interpolation. Rev. Real Acad. Cienc. Zaragoza 64, 107–120 (2009)

    MATH  Google Scholar 

  8. Chand, A.K.B., Viswanathan, P.: Cubic Hermite and cubic spline fractal interpolation functions. In: AIP Conference Proceedings, vol. 1479, pp. 1467–1470 (2012)

  9. Delbourgo, R., Gregory, J.A.: \(C^2\) rational quadratic spline interpolation to monotonic data. IMA J. Numer. Anal. 3, 141–152 (1983)

  10. Delbourgo, R., Gregory, J.A.: Shape preserving piecewise rational interpolation. SIAM J. Sci. Stat. Comp. 6(1), 967–976 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dimri, V.P.: Applications of Fractals in Earth Sciences. A. A. Balkema Publishers, Brookfield (2000)

    Google Scholar 

  12. Duan, Q., Djidjeli, K., Price, W.G., Twizell, E.H.: The approximation properties of some rational cubic splines. J. Comp. Math. 72, 155–166 (1999)

    MATH  MathSciNet  Google Scholar 

  13. Feder, J.: Fractals (Physics of Solids and Liquids). Plenum Press, New York (1988)

    Google Scholar 

  14. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fritsch, F.N., Butland, J.: A method for constructing local monotone piecewise cubic interpolants. SIAM J. Sci. Stat. Comp. 5, 303–304 (1984)

    MathSciNet  Google Scholar 

  16. Fuhr, R.D., Kallay, M.: Monotone linear rational spline interpolation. CAGD 9, 313–319 (1992)

    Google Scholar 

  17. Goodman, T.N.T., Unsworth, K.: Shape preserving interpolation by curvature continuous parametric curves. CAGD 5, 323–340 (1988)

    MATH  MathSciNet  Google Scholar 

  18. Gregory, J.A., Delbourgo, R.: Piecewise rational quadratic interpolation to monotonic data. IMA J. Numer. Anal. 2, 123–130 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gregory, J.A., Delbourgo, R.: Determination of derivative parameters for a monotonic rational quadratic interpolant. IMA J. Numer. Anal. 5, 397–406 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gregory, J.A., Sarfraz, M.: A rational spline with tension. CAGD 7, 1–13 (1990)

    Google Scholar 

  21. Heck, A., Perdang, J.M.: Appl. Fractals Astron. Springer, Berlin (1991)

    Book  Google Scholar 

  22. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hutchinson, J., Lo, A., Poggio, T.: A nonparametric approach to pricing and hedging derivative securities via learning networks. J. Finance 49, 851–889 (1994)

    Article  Google Scholar 

  24. Kumar, V., Gavrilova, L., Tan, C.J.K., Ecuyer, P.L.: Computational science and its applications. In: ICCSA. Springer, Berlin (2003)

  25. Lamberti, P., Manni, C.: Shape preserving \(C^2\) functional interpolation via parametric curves. Numer. Algorithms 28, 229–254 (2001)

    Google Scholar 

  26. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  27. Maragos, P.: Fractal aspects of speech signals: dimension and interpolation. ICASSP 1, 417–420 (1991)

    Google Scholar 

  28. Navascués, M.A., Sebastián, M.V.: Smooth fractal interpolation. J. Inequalities Appl., 1–20. Article ID 78734 (2006)

    Google Scholar 

  29. Passow, E., Roulier, J.A.: Monotone and convex spline interpolation. SIAM J. Numer. Anal. 14, 904–909 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  30. Passow, E.: Monotone quadratic spline interpolation. J. Approx. Theory 19, 143–147 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sarfraz, M., Hussain, M.Z.: Data visualization using rational spline interpolation. J. Comp. Appl. Math. 189, 513–525 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sarfraz, M., Al-Mulhem, M., Ashraf, F.: Preserving monotonic shape of the data using piecewise rational cubic functions. Comput. Graph. 21(1), 5–14 (1997)

    Article  Google Scholar 

  33. Schmidt, J.W., HeB, W.: Positivity of cubic polynomial on intervals and positive spline interpolation. BIT 28, 340–352 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schumaker, L.L.: On shape preserving piecewise quadratic spline interpolation. SIAM J. Numer. Anal. 20, 854–864 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schweikert, D.G.: Interpolatory tension splines with automatic selection of tension factors. J. Math. Phys. 45, 312–317 (1966)

    MATH  MathSciNet  Google Scholar 

  36. Sohrab, H.H.: Basic Real Anal. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  37. Shrivastava, M., Joseph, J.: \(C^2\)-rational cubic spline involving tension parameters. Proc. Indian Acad. Sci. Math. Sci. 110(3), 305–314 (2000)

  38. Tian, M.: Monotonicity preserving piecewise rational cubic interpolation. Int. J. Math. Anal. 5, 99–104 (2011)

    Google Scholar 

  39. Wittenbrink, C.M.: IFS fractal interpolation for 2D and 3D visualization. In: Proceedings of the IEEE Visualization Conference, pp. 77–84 (1995)

  40. Xie, H.: Fractals in Rock Mechanics. A. A. Balkema Publishers, Brookfield (1993)

    Google Scholar 

  41. Zimmermann, H.J.: Fuzzy set theory and its applications. Kluwer, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The partial support of the Department of Science and Technology of Govt. of India (SERC DST Project No. SR/S4/MS: 694/10) is gratefully acknowledged. The authors are thankful to the referees for their valuable suggestions to improve the presentation of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. B. Chand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chand, A.K.B., Vijender, N. & Navascués, M.A. Shape preservation of scientific data through rational fractal splines. Calcolo 51, 329–362 (2014). https://doi.org/10.1007/s10092-013-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-013-0088-2

Keywords

Mathematics Subject Classification (2000)

Navigation