Skip to main content

Toward a Unified Methodology for Fractal Extension of Various Shape Preserving Spline Interpolants

  • Conference paper
  • First Online:
Mathematics and Computing

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 139))

Abstract

Fractal interpolation, one in the long tradition of those involving the interpolatary theory of functions, is concerned with interpolation of a data set with a function whose graph is a fractal or a self-referential set. The novelty of fractal interpolants lies in their ability to model a data set with either a smooth or a nonsmooth function depending on the problem at hand. To broaden their horizons, some special class of fractal interpolants are introduced and their shape preserving aspects are investigated recently in the literature. In the current article, we provide a unified approach for the fractal generalization of various traditional nonrecursive polynomial and rational splines. To this end, first we shall view polynomial/rational FIFs as \(\alpha \)-fractal functions corresponding to the traditional nonrecursive splines. The elements of the iterated function system are identified befittingly so that the class of \(\alpha \)-fractal function \(f^\mathbf {\alpha }\) incorporates the geometric features such as positivity, monotonicity, and convexity in addition to the regularity inherent in the generating function f. This general theory in conjuction with shape preserving aspects of the traditional splines provides algorithms for the construction of shape preserving fractal interpolation functions. Even though the results obtained in this article are generally enough, we wish to apply it on a specific rational cubic spline with two free shape parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2(4), 303–329 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barnsley, M.F., Harrington, A.N.: The calculus of fractal functions. J. Approx. Theory 57(1), 14–34 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chand, A.K.B., Navascués, M.A.: Generalized Hermite fractal interpolation. Rev. R. Acad. de ciencias. Zaragoza 64(2), 107–120 (2009)

    MATH  Google Scholar 

  5. Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53(4), 841–865 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chand, A.K.B., Katiyar, S.K., Saravaana Kumar, G.: A new class of rational fractal function for curve fitting. In: Proceeding of Computer Aided Engineering CAE 2013, pp. 78–93. ISBN No-80689-17-3

    Google Scholar 

  7. Chand, A.K.B., Vijender, N., Navascués, M.A.: Shape preservation of scientific data through rational fractal splines. Calcolo. 51, 329–362 (2013)

    Article  Google Scholar 

  8. Dalla, L., Drakopoulos, V., Prodromou, M.: On the box dimension for a class of nonaffine fractal interpolation functions. Anal. Theory Appl. 19(3), 220–233 (2003)

    Article  MathSciNet  Google Scholar 

  9. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolations. SIAM J. Numer. Ana. 17(2), 238–246 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hussain, M., Hussain, M.Z., Crips, J.: Robert: \({\cal C}^2\) Rational qunitic function. J. Prime Res. Math. 5, 115–123 (2009)

    Google Scholar 

  11. Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  Google Scholar 

  12. Navascués, M.A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Navascués, M.A., Sebastián, M.V.: Some results of convergence of cubic spline fractal interpolation functions. Fractals 11(1), 1–7 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Navascués, M. A., Sebastián, M. V.: Smooth fractal interpolation, J. Inequal. Appl. Article ID 78734, p. 20 (2004)

    Google Scholar 

  15. Navascués, M.A., Chand, A.K.B., Viswanathan, P., Sebastián, M.V.: Fractal interpolation functions: a short survey. Appl. Math. 5, 1834–1841 (2014)

    Article  Google Scholar 

  16. Schimdt, J.W., Heß, W.: Positivity of cubic polynomial on intervals and positive spline interpolation. BIT Numer. Anal. 28, 340–352 (1988)

    Article  Google Scholar 

  17. Sarfraz, M., Hussain, M.Z.: Data visualization using rational spline interpolation. J. Comp. Appl. Math. 189, 513–525 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sarfraz, M., Hussain, M.Z., Nisar, A.: Positive data modeling using spline function. Appl. Math. Comp. 216, 2036–2049 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sarfraz, M., Hussain, M. Z., Hussain, M.: Shape-preserving curve interpolation, J. Comp. Math. 89, 35–53 (2012)

    Google Scholar 

  20. Viswanathan, P., Chand, A.K.B., Navascués, M.A.: Fractal perturbation preserving fundamental shapes: bounds on the scale factors. J. Math. Anal. Appl. 419, 804–817 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Viswanathan, P.: A Study on univariate shape preserving fractal interpolation and approximation. Ph. D. thesis, Indian Institute of Technology Madras, India, (2014)

    Google Scholar 

  22. Wang, H.Y., Yu, J.S.: Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory. 175, 1–18 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Katiyar, S.K., Chand, A.K.B. (2015). Toward a Unified Methodology for Fractal Extension of Various Shape Preserving Spline Interpolants. In: Mohapatra, R., Chowdhury, D., Giri, D. (eds) Mathematics and Computing. Springer Proceedings in Mathematics & Statistics, vol 139. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2452-5_15

Download citation

Publish with us

Policies and ethics