Skip to main content

Advertisement

Log in

Neurotoxicity and safety of the rechallenge of immune checkpoint inhibitors: a growing issue in neuro-oncology practice

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Neurological, immune-related adverse events (n-irAE) due to immune checkpoint inhibitors (ICI) represent a growing clinical problem in neuro-oncology practice. Although rare, the frequency of n-irAEs will increase as ICI use becomes more common. Central and peripheral nervous systems may be involved, and multiple n-irAEs like myositis, myasthenia gravis, and myocarditis can arise in the same patient. Prompt recognition, initial ICI discontinuation, and treatment with immunosuppressive therapy comprise key aspects of managing these potentially fatal neurological complications. Severe and/or treatment-refractory n-irAEs may occur and require individualized care. In the same vein, a possible reintroduction of ICI after a n-irAE represents an additional challenge in clinical practice. An approach by experienced neurologists involved in highly subspecialized, multidisciplinary care teams is, therefore, of major importance in managing these cases. The present study updates current knowledge regarding presentation forms, diagnostic workflows, outcomes, and general management of n-irAEs. With the aim to guide neurologists in decision-making processes during such scenarios, the study further reviews available data on ICI reintroduction safety in patients with prior n-irAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable.

References

  1. Guidon AC, Burton LB, Chwalisz BK et al (2021) Consensus disease definitions for neurologic immune-related adverse events of immune checkpoint inhibitors. J Immunother Cancer 9:e002890. https://doi.org/10.1136/jitc-2021-002890

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cuzzubbo S, Javeri F, Tissier M et al (2017) Neurological adverse events associated with immune checkpoint inhibitors: review of the literature. Eur J Cancer 73:1–8. https://doi.org/10.1016/j.ejca.2016.12.001

    Article  CAS  PubMed  Google Scholar 

  3. Johnson DB, Manouchehri A, Haugh AM et al (2019) Neurologic toxicity associated with immune checkpoint inhibitors: a pharmacovigilance study. J Immunother Cancer 7:134. https://doi.org/10.1186/s40425-019-0617-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sato K, Mano T, Iwata A, Toda T (2019) Neurological and related adverse events in immune checkpoint inhibitors: a pharmacovigilance study from the Japanese Adverse Drug Event Report database. J Neurooncol 145:1–9. https://doi.org/10.1007/s11060-019-03273-1

    Article  CAS  PubMed  Google Scholar 

  5. Spain L, Walls G, Messiou C et al (2017) Efficacy and toxicity of rechallenge with combination immune checkpoint blockade in metastatic melanoma: a case series. Cancer Immunol Immunother 66:113–117. https://doi.org/10.1007/s00262-016-1926-2

    Article  CAS  PubMed  Google Scholar 

  6. Dubey D, David WS, Reynolds KL et al (2020) Severe neurological toxicity of immune checkpoint inhibitors: growing spectrum. Ann Neurol 87:659–669. https://doi.org/10.1002/ana.25708

    Article  PubMed  Google Scholar 

  7. Zubiri L, Molina GE, Mooradian MJ et al (2021) Effect of a multidisciplinary Severe Immunotherapy Complications Service on outcomes for patients receiving immune checkpoint inhibitor therapy for cancer. J Immunother Cancer 9:e002886. https://doi.org/10.1136/jitc-2021-002886

    Article  PubMed  PubMed Central  Google Scholar 

  8. Möhn N, Mahjoub S, Gutzmer R et al (2020) Diagnosis and differential diagnosis of neurological adverse events during immune checkpoint inhibitor therapy. Journal of Oncology 2020:1–9. https://doi.org/10.1155/2020/8865054

    Article  CAS  Google Scholar 

  9. Psimaras D, Velasco R, Birzu C et al (2019 Oct) (2019) Immune checkpoint inhibitors-induced neuromuscular toxicity: from pathogenesis to treatment. J Peripher Nerv Syst 24(Suppl 2):S74–S85. https://doi.org/10.1111/jns.12339

    Article  CAS  PubMed  Google Scholar 

  10. Marini A, Bernardini A, Gigli GL et al (2021) Neurologic adverse events of immune checkpoint inhibitors: a systematic review. Neurology 96:754–766. https://doi.org/10.1212/WNL.0000000000011795

    Article  CAS  PubMed  Google Scholar 

  11. Kao JC, Brickshawana A, Liewluck T (2018) Neuromuscular complications of programmed cell death-1 (PD-1) inhibitors. Curr Neurol Neurosci Rep 18:63. https://doi.org/10.1007/s11910-018-0878-7

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki S, Ishikawa N, Konoeda F et al (2017) Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 89:1127–1134. https://doi.org/10.1212/WNL.0000000000004359

    Article  CAS  PubMed  Google Scholar 

  13. Vogrig A, Fouret M, Joubert B et al (2019) Increased frequency of anti-Ma2 encephalitis associated with immune checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 6:e604. https://doi.org/10.1212/NXI.0000000000000604

    Article  PubMed  PubMed Central  Google Scholar 

  14. Velasco R, Villagrán M, Jové M et al (2021) Encephalitis induced by immune checkpoint inhibitors: a systematic review. JAMA Neurol 78:864. https://doi.org/10.1001/jamaneurol.2021.0249

    Article  PubMed  Google Scholar 

  15. Valencia-Sanchez C, Zekeridou A (2021) Paraneoplastic neurological syndromes and beyond emerging with the introduction of immune checkpoint inhibitor cancer immunotherapy. Front Neurol 12:642800. https://doi.org/10.3389/fneur.2021.642800

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sechi E, Markovic SN, McKeon A et al (2020) Neurologic autoimmunity and immune checkpoint inhibitors: autoantibody profiles and outcomes. Neurology 95:e2442–e2452. https://doi.org/10.1212/WNL.0000000000010632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Graus F, Vogrig A, Muñiz-Castrillo S et al (2021) Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm 8:e1014. https://doi.org/10.1212/NXI.0000000000001014

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nersesjan V, McWilliam O, Krarup L-H, Kondziella D (2021) Autoimmune encephalitis related to cancer treatment with immune checkpoint inhibitors: a systematic review. Neurology 97:e191–e202. https://doi.org/10.1212/WNL.0000000000012122

    Article  CAS  PubMed  Google Scholar 

  19. Plaçais L, Michot JM, Champiat S, et al (2021) Neurological complications induced by immune checkpoint inhibitors: a comprehensive descriptive case-series unraveling high risk of long-term sequelae. Brain Communications Volume 3, Issue 4, 2021, fcab220, https://doi.org/10.1093/braincomms/fcab220

  20. Allouchery M, Lombard T, Martin M et al (2020) Safety of immune checkpoint inhibitor rechallenge after discontinuation for grade ≥2 immune-related adverse events in patients with cancer. J Immunother Cancer 8:e001622. https://doi.org/10.1136/jitc-2020-001622

    Article  PubMed  PubMed Central  Google Scholar 

  21. Santini FC, Rizvi H, Plodkowski AJ et al (2018) Safety and efficacy of re-treating with immunotherapy after immune-related adverse events in patients with NSCLC. Cancer Immunol Res 6:1093–1099. https://doi.org/10.1158/2326-6066.CIR-17-0755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simonaggio A, Michot JM, Voisin AL et al (2019) Evaluation of readministration of immune checkpoint inhibitors after immune-related adverse events in patients with cancer. JAMA Oncol 5:1310. https://doi.org/10.1001/jamaoncol.2019.1022

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dolladille C, Da-Silva A, Alexandre J (2020) Recurrence of immune-related adverse events after immune checkpoint inhibitor rechallenge—reply. JAMA Oncol 6:1814. https://doi.org/10.1001/jamaoncol.2020.3960

    Article  PubMed  Google Scholar 

  24. Thompson JA, Schneider BJ, Brahmer J et al (2019) Management of immunotherapy-related toxicities, Version 1.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 17:255–289. https://doi.org/10.6004/jnccn.2019.0013

    Article  CAS  PubMed  Google Scholar 

  25. Weill A, Delyon J, Descamps V et al (2021 Dec 1) (2021) Treatment strategies and safety of rechallenge in the setting of immune checkpoint inhibitors-related myositis: a national multicentre study. Rheumatology 60(12):5753–5764. https://doi.org/10.1093/rheumatology/keab249

    Article  CAS  PubMed  Google Scholar 

  26. Thouvenin L, Olivier T, Banna G et al (2021) Immune checkpoint inhibitor-induced aseptic meningitis and encephalitis: a case-series and narrative review. Therapeutic Advances in Drug Safety 12:204209862110047. https://doi.org/10.1177/20420986211004745

    Article  CAS  Google Scholar 

  27. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  28. Mahoney KM, Freeman GJ, McDermott DF (2015) The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 37:764–782. https://doi.org/10.1016/j.clinthera.2015.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355. https://doi.org/10.1126/science.aar4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Graus F, Dalmau J (2019) Paraneoplastic neurological syndromes in the era of immune-checkpoint inhibitors. Nat Rev Clin Oncol 16:535–548. https://doi.org/10.1038/s41571-019-0194-4

    Article  CAS  PubMed  Google Scholar 

  31. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boussiotis VA (2016) Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med 375:1767–1778. https://doi.org/10.1056/NEJMra1514296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yshii LM, Hohlfeld R, Liblau RS (2017) Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nat Rev Neurol 13:755–763. https://doi.org/10.1038/nrneurol.2017.144

    Article  CAS  PubMed  Google Scholar 

  34. Boutros C, Tarhini A, Routier E et al (2016) Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 13:473–486. https://doi.org/10.1038/nrclinonc.2016.58

    Article  CAS  PubMed  Google Scholar 

  35. Vilariño N, Bruna J, Kalofonou F et al (2020) Immune-driven pathogenesis of neurotoxicity after exposure of cancer patients to immune checkpoint inhibitors. IJMS 21:5774. https://doi.org/10.3390/ijms21165774

    Article  CAS  PubMed Central  Google Scholar 

  36. Dalakas MC (2018) Neurological complications of immune checkpoint inhibitors: what happens when you ‘take the brakes off’ the immune system. Ther Adv Neurol Disord 11:175628641879986. https://doi.org/10.1177/1756286418799864

    Article  CAS  Google Scholar 

  37. Xie W, Huang H, Xiao S et al (2020) Immune checkpoint inhibitors therapies in patients with cancer and preexisting autoimmune diseases: a meta-analysis of observational studies. Autoimmun Rev 19:102687. https://doi.org/10.1016/j.autrev.2020.102687

    Article  CAS  PubMed  Google Scholar 

  38. Hoa S, Laaouad L, Roberts J et al (2021) Preexisting autoimmune disease and immune-related adverse events associated with anti-PD-1 cancer immunotherapy: a national case series from the Canadian Research Group of Rheumatology in Immuno-Oncology. Cancer Immunol Immunother 70:2197–2207. https://doi.org/10.1007/s00262-021-02851-5

    Article  CAS  PubMed  Google Scholar 

  39. Yshii LM, Gebauer CM, Pignolet B et al (2016) CTLA4 blockade elicits paraneoplastic neurological disease in a mouse model. Brain 139:2923–2934. https://doi.org/10.1093/brain/aww225

    Article  PubMed  Google Scholar 

  40. Papadopoulos KP, Romero RS, Gonzalez G et al (2018) Anti-Hu-associated autoimmune limbic encephalitis in a patient with PD-1 inhibitor-responsive myxoid chondrosarcoma. The Oncol 23:118–120. https://doi.org/10.1634/theoncologist.2017-0344

    Article  Google Scholar 

  41. Shibaki R, Murakami S, Oki K, Ohe Y (2019) Nivolumab-induced autoimmune encephalitis in an anti-neuronal autoantibody-positive patient. Jpn J Clin Oncol 49:793–794. https://doi.org/10.1093/jjco/hyz087

    Article  PubMed  Google Scholar 

  42. Matsuoka H, Kimura H, Koba H et al (2018) Nivolumab-induced limbic encephalitis with Anti-Hu antibody in a patient with advanced pleomorphic carcinoma of the lung. Clin Lung Cancer 19:e597–e599. https://doi.org/10.1016/j.cllc.2018.04.009

    Article  PubMed  Google Scholar 

  43. Johnson DB, McDonnell WJ, Gonzalez-Ericsson PI et al (2019) A case report of clonal EBV-like memory CD4+ T cell activation in fatal checkpoint inhibitor-induced encephalitis. Nat Med 25:1243–1250. https://doi.org/10.1038/s41591-019-0523-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Esfahani K, Elkrief A, Calabrese C et al (2020) Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol 17:504–515. https://doi.org/10.1038/s41571-020-0352-8

    Article  CAS  PubMed  Google Scholar 

  45. Caturegli P, Dalmazi GD, Lombardi M et al (2016) Hypophysitis secondary to cytotoxic T-lymphocyte–associated protein 4 blockade: insights into pathogenesis from an autopsy series. Am J Pathol 186:3225–3235. https://doi.org/10.1016/j.ajpath.2016.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iwama S, De Remigis A, Callahan MK, et al (2014) Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 6:230ra45. https://doi.org/10.1126/scitranslmed.3008002

  47. Larkin J, Chmielowski B, Lao CD et al (2017) Neurologic serious adverse events associated with nivolumab plus ipilimumab or nivolumab alone in advanced melanoma, including a case series of encephalitis. The Oncol 22:709–718. https://doi.org/10.1634/theoncologist.2016-0487

    Article  CAS  Google Scholar 

  48. Wang DY, Salem J-E, Cohen JV et al (2018) Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol 4:1721. https://doi.org/10.1001/jamaoncol.2018.3923

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu H, Tan P, Ai J et al (2019) Antitumor activity and treatment-related toxicity associated with nivolumab plus ipilimumab in advanced malignancies: a systematic review and meta-analysis. Front Pharmacol 10:1300. https://doi.org/10.3389/fphar.2019.01300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vogrig A, Muñiz-Castrillo S, Joubert B et al (2020) Cranial Nerve disorders associated with immune checkpoint inhibitors. Neurology. https://doi.org/10.1212/WNL.0000000000011340.10.1212/WNL.0000000000011340

    Article  PubMed  Google Scholar 

  51. Vogrig A, Muñiz-Castrillo S, Joubert B et al (2020) Central nervous system complications associated with immune checkpoint inhibitors. J Neurol Neurosurg Psychiatry 91:772–778. https://doi.org/10.1136/jnnp-2020-323055

    Article  PubMed  Google Scholar 

  52. Touat M, Talmasov D, Ricard D, Psimaras D (2017) Neurological toxicities associated with immune-checkpoint inhibitors. Curr Opin Neurol 30:659–668. https://doi.org/10.1097/WCO.0000000000000503

    Article  CAS  PubMed  Google Scholar 

  53. Haanen JBAG, Carbonnel F, Robert C, et al (2017) Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 28:iv119–iv142. https://doi.org/10.1093/annonc/mdx225

  54. Brahmer JR, Lacchetti C, Schneider BJ et al (2018) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. JCO 36:1714–1768. https://doi.org/10.1200/JCO.2017.77.6385

    Article  CAS  Google Scholar 

  55. Puzanov I, Diab A, Abdallah K et al (2017) Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 5:95. https://doi.org/10.1186/s40425-017-0300-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shah S, Dunn-Pirio A, Luedke M et al (2018) Nivolumab-induced autoimmune encephalitis in two patients with lung adenocarcinoma. Case Rep Neurol Med 2018:2548528. https://doi.org/10.1155/2018/2548528

    Article  PubMed  PubMed Central  Google Scholar 

  57. Williams TJ, Benavides DR, Patrice K-A et al (2016) Association of autoimmune encephalitis with combined immune checkpoint inhibitor treatment for metastatic cancer. JAMA Neurol 73:928–933. https://doi.org/10.1001/jamaneurol.2016.1399

    Article  PubMed  Google Scholar 

  58. Kopecký J, Kubeček O, Geryk T et al (2018) Nivolumab induced encephalopathy in a man with metastatic renal cell cancer: a case report. J Med Case Rep 12:262. https://doi.org/10.1186/s13256-018-1786-9

    Article  PubMed  PubMed Central  Google Scholar 

  59. Picca A, Valyraki N, Birzu C et al (2021) Anti-interleukin-6 and Janus kinase inhibitors for severe neurologic toxicity of checkpoint inhibitors. Neurol Neuroimmunol Neuroinflamm 8:e1073. https://doi.org/10.1212/NXI.0000000000001073

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hottinger AF, de Micheli R, Guido V et al (2018) Natalizumab may control immune checkpoint inhibitor–induced limbic encephalitis. Neurol Neuroimmunol Neuroinflamm 5:e439. https://doi.org/10.1212/NXI.0000000000000439

    Article  PubMed  PubMed Central  Google Scholar 

  61. Haugh AM, Probasco JC, Johnson DB (2020) Neurologic complications of immune checkpoint inhibitors. Expert Opin Drug Saf 19:479–488. https://doi.org/10.1080/14740338.2020.1738382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cuzzubbo S, Tetu P, Guegan S et al (2020) Reintroduction of immune-checkpoint inhibitors after immune-related meningitis: a case series of melanoma patients. J Immunother Cancer 8:e001034. https://doi.org/10.1136/jitc-2020-001034

    Article  PubMed  PubMed Central  Google Scholar 

  63. Galmiche S, Lheure C, Kramkimel N, et al (2019) Encephalitis induced by immune checkpoint inhibitors in metastatic melanoma: a monocentric retrospective study. J Eur Acad Dermatol Venereol 33: https://doi.org/10.1111/jdv.15756

  64. Taliansky A, Furman O, Gadot M et al (2021) Immune checkpoint inhibitors–related encephalitis in melanoma and non-melanoma cancer patients: a single center experience. Support Care Cancer. https://doi.org/10.1007/s00520-021-06331-5

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fellner A, Makranz C, Lotem M et al (2018) Neurologic complications of immune checkpoint inhibitors. J Neurooncol 137:601–609. https://doi.org/10.1007/s11060-018-2752-5

    Article  CAS  PubMed  Google Scholar 

  66. Raskin J, Masrori P, Cant A et al (2017) Recurrent dysphasia due to nivolumab-induced encephalopathy with presence of Hu autoantibody. Lung Cancer 109:74–77. https://doi.org/10.1016/j.lungcan.2017.05.002

    Article  PubMed  Google Scholar 

  67. Soror NN, Hemrock L, Shah P et al (2021) Brain stem encephalitis in a patient with recurrent small cell lung cancer treated with immune checkpoint inhibitor: case presentation and review of the literature. Cureus 13:e13034. https://doi.org/10.7759/cureus.13034

    Article  PubMed  PubMed Central  Google Scholar 

  68. Karandikar NJ, Eagar TN, Vanderlugt CL et al (2000) CTLA-4 downregulates epitope spreading and mediates remission in relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 109:173–180. https://doi.org/10.1016/S0165-5728(00)00322-2

    Article  CAS  PubMed  Google Scholar 

  69. Oliveira MCB, de Brito MH, Simabukuro MM (2020) Central nervous system demyelination associated with immune checkpoint inhibitors: review of the literature. Front Neurol 11:538695. https://doi.org/10.3389/fneur.2020.538695

    Article  PubMed  PubMed Central  Google Scholar 

  70. Garcia CR, Jayswal R, Adams V et al (2019) Multiple sclerosis outcomes after cancer immunotherapy. Clin Transl Oncol 21:1336–1342. https://doi.org/10.1007/s12094-019-02060-8

    Article  PubMed  PubMed Central  Google Scholar 

  71. Leonardi GC, Gainor JF, Altan M et al (2018) Safety of programmed death–1 pathway inhibitors among patients with non–small-cell lung cancer and preexisting autoimmune disorders. JCO 36:1905–1912. https://doi.org/10.1200/JCO.2017.77.0305

    Article  CAS  Google Scholar 

  72. Gettings EJ, Hackett CT, Scott TF (2015) Severe relapse in a multiple sclerosis patient associated with ipilimumab treatment of melanoma. Mult Scler 21:670–670. https://doi.org/10.1177/1352458514549403

    Article  PubMed  Google Scholar 

  73. Cao Y, Nylander A, Ramanan S et al (2016) CNS demyelination and enhanced myelin-reactive responses after ipilimumab treatment. Neurology 86:1553–1556. https://doi.org/10.1212/WNL.0000000000002594

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gerdes LA, Held K, Beltrán E et al (2016) CTLA4 as immunological checkpoint in the development of multiple sclerosis. Ann Neurol 80:294–300. https://doi.org/10.1002/ana.24715

    Article  PubMed  PubMed Central  Google Scholar 

  75. Johnson DB, Sullivan RJ, Ott PA et al (2016) Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol 2:234–240. https://doi.org/10.1001/jamaoncol.2015.4368

    Article  PubMed  Google Scholar 

  76. Nasralla S, Abboud H (2020) Is neuromyelitis optica without AQP4-IgG a T-cell mediated disease? Insights from checkpoint inhibitor immune-related adverse events. Multiple Sclerosis and Related Disorders 46:102451. https://doi.org/10.1016/j.msard.2020.102451

    Article  PubMed  Google Scholar 

  77. Narumi Y, Yoshida R, Minami Y et al (2018) Neuromyelitis optica spectrum disorder secondary to treatment with anti-PD-1 antibody nivolumab: the first report. BMC Cancer 18:95. https://doi.org/10.1186/s12885-018-3997-2

    Article  PubMed  PubMed Central  Google Scholar 

  78. Shimada T, Hoshino Y, Tsunemi T et al (2020) Neuromyelitis optica spectrum disorder after treatment with pembrolizumab. Multiple Sclerosis and Related Disorders 37:101447. https://doi.org/10.1016/j.msard.2019.101447

    Article  PubMed  Google Scholar 

  79. Chang VA, Simpson DR, Daniels GA, Piccioni DE (2018) Infliximab for treatment-refractory transverse myelitis following immune therapy and radiation. j immunotherapy cancer 6:153. https://doi.org/10.1186/s40425-018-0471-2

  80. Carausu M, Beddok A, Langer A, et al (2019) Radiation myelitis after pembrolizumab administration, with favorable clinical evolution and safe rechallenge: a case report and review of the literature. j immunotherapy cancer 7:317. https://doi.org/10.1186/s40425-019-0803-x

  81. Boisseau W, Touat M, Berzero G et al (2017) Safety of treatment with nivolumab after ipilimumab-related meningoradiculitis and bilateral optic neuropathy. Eur J Cancer 83:28–31. https://doi.org/10.1016/j.ejca.2017.05.036

    Article  CAS  PubMed  Google Scholar 

  82. Khoja L, Maurice C, Chappell M et al (2016) Eosinophilic fasciitis and acute encephalopathy toxicity from pembrolizumab treatment of a patient with metastatic melanoma. Cancer Immunol Res 4:175–178. https://doi.org/10.1158/2326-6066.CIR-15-0186

    Article  PubMed  Google Scholar 

  83. Läubli H, Hench J, Stanczak M, et al (2017) Cerebral vasculitis mimicking intracranial metastatic progression of lung cancer during PD-1 blockade. j immunotherapy cancer 5:46. https://doi.org/10.1186/s40425-017-0249-y

  84. Sabile JM, Grider DJ, Prickett KA et al (2021) Posterior reversible encephalopathy syndrome (PRES) and drug-induced hypersensitivity syndrome (DIHS) following immunotherapy and BRAF/MEK inhibition with continued response in metastatic melanoma. Case Rep Oncol Med 2021:8845063. https://doi.org/10.1155/2021/8845063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barber FD (2021) Identification and management of posterior reversible encephalopathy syndrome in a patient enrolled in an immunotherapy combination phase I clinical trial: a case study. asia Pac J Oncol Nurs 8:103–105. https://doi.org/10.4103/apjon.apjon_49_20

  86. Kim D (2019) Posterior reversible encephalopathy syndrome induced by nivolumab immunotherapy for non-small-cell lung cancer. Clin Case Rep 7:935–938. https://doi.org/10.1002/ccr3.2122

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ghosn J, Vicino A, Michielin O et al (2018) A severe case of neuro-Sjögren’s syndrome induced by pembrolizumab. J Immunother Cancer 6:110. https://doi.org/10.1186/s40425-018-0429-4

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dunn-Pirio AM, Shah S, Eckstein C (2018) Neurosarcoidosis following immune checkpoint inhibition. Case Rep Oncol 11:521–526. https://doi.org/10.1159/000491599

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tan I, Malinzak M, Salama AKS (2018) Delayed onset of neurosarcoidosis after concurrent ipilimumab/nivolumab therapy. J Immunother Cancer 6:77. https://doi.org/10.1186/s40425-018-0390-2

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dubey D, David WS, Amato AA et al (2019) Varied phenotypes and management of immune checkpoint inhibitor-associated neuropathies. Neurology 93:e1093–e1103. https://doi.org/10.1212/WNL.0000000000008091

    Article  CAS  PubMed  Google Scholar 

  91. Bruna J, Argyriou AA, Anastopoulou GG et al (2020) Incidence and characteristics of neurotoxicity in immune checkpoint inhibitors with focus on neuromuscular events: experience beyond the clinical trials. J Peripher Nerv Syst 25:171–177. https://doi.org/10.1111/jns.12371

    Article  CAS  PubMed  Google Scholar 

  92. Man J, Ritchie G, Links M et al (2018) Treatment-related toxicities of immune checkpoint inhibitors in advanced cancers: a meta-analysis. Asia-Pac J Clin Oncol 14:141–152. https://doi.org/10.1111/ajco.12838

    Article  PubMed  Google Scholar 

  93. Astaras C, de Micheli R, Moura B et al (2018) Neurological adverse events associated with immune checkpoint inhibitors: diagnosis and management. Curr Neurol Neurosci Rep 18:3. https://doi.org/10.1007/s11910-018-0810-1

    Article  CAS  PubMed  Google Scholar 

  94. Li Y, Zhang X, Zhao C (2021) Guillain-Barré syndrome-like polyneuropathy associated with immune checkpoint inhibitors: a systematic review of 33 cases. Biomed Res Int 2021:9800488. https://doi.org/10.1155/2021/9800488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Manam R, Martin JL, Gross JA et al (2018) Case reports of pembrolizumab-induced acute inflammatory demyelinating polyneuropathy. Cureus. https://doi.org/10.7759/cureus.3371

    Article  PubMed  PubMed Central  Google Scholar 

  96. Patel AS, Snook RJ, Sehdev A (2019) Chronic inflammatory demyelinating polyradiculoneuropathy secondary to immune checkpoint inhibitors in melanoma patients. Discov Med 28:107–111

    PubMed  Google Scholar 

  97. Baird-Gunning JJD, Weerasinghe D, Silsby M et al (2018) Miller Fisher syndrome associated with immunotherapy for metastatic melanoma. The Neurohospitalist 8:191–193. https://doi.org/10.1177/1941874418778957

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bhatlapenumarthi V, Patwari A, Harb AJ (2021) Immune-related adverse events and immune checkpoint inhibitor tolerance on rechallenge in patients with irAEs: a single-center experience. J Cancer Res Clin Oncol 147:2789–2800. https://doi.org/10.1007/s00432-021-03610-w

    Article  CAS  PubMed  Google Scholar 

  99. Chompoopong P, Zekeridou A, Shelly S, et al (2021) Comparison of immune checkpoint inhibitor-related neuropathies among patients with neuroendocrine and non-neuroendocrine tumours. J Neurol Neurosurg Psychiatry jnnp-2021–326369. https://doi.org/10.1136/jnnp-2021-326369

  100. Alhammad RM, Dronca RS, Kottschade LA et al (2017) Brachial plexus neuritis associated with anti–programmed cell death-1 antibodies: report of 2 cases. Mayo Clinic Proceedings: Innovations, Quality & Outcomes 1:192–197. https://doi.org/10.1016/j.mayocpiqo.2017.07.004

    Article  Google Scholar 

  101. Villarreal-Compagny M, Iglesias P, Marco-Hernández J et al (2020) ANCA-associated vasculitic neuropathy during treatment with ipilimumab. Rheumatology 59:251–252. https://doi.org/10.1093/rheumatology/kez235

    Article  PubMed  Google Scholar 

  102. Zoccarato M, Grisold W, Grisold A et al (2021) Paraneoplastic neuropathies: what’s new since the 2004 recommended diagnostic criteria. Front Neurol 12:706169. https://doi.org/10.3389/fneur.2021.706169

    Article  PubMed  PubMed Central  Google Scholar 

  103. Haanen J, Ernstoff M, Wang Y et al (2020) Rechallenge patients with immune checkpoint inhibitors following severe immune-related adverse events: review of the literature and suggested prophylactic strategy. J Immunother Cancer 8:e000604. https://doi.org/10.1136/jitc-2020-000604

    Article  PubMed  PubMed Central  Google Scholar 

  104. Muralikrishnan S, Ronan LK, Coker S et al (2020) Treatment considerations for patients with unresectable metastatic melanoma who develop pembrolizumab-induced guillain-barré toxicity: a case report. Case Rep Oncol 13:43–48. https://doi.org/10.1159/000504930

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gravbrot N, Scherer K, Sundararajan S (2019) Safe transition to pembrolizumab following ipilimumab-induced Guillain-Barré syndrome: a case report and review of the literature. Case Rep Oncol Med 2019:1–5. https://doi.org/10.1155/2019/5490707

    Article  Google Scholar 

  106. Johnson V, Friedman N, Haller NA, Hagel C (2008) Immune mediated neurologic dysfunction as a paraneoplastic syndrome in renal cell carcinoma. J Neurooncol 90:279–281. https://doi.org/10.1007/s11060-008-9675-5

    Article  PubMed  Google Scholar 

  107. Lau KHV, Kumar A, Yang IH, Nowak RJ (2016) Exacerbation of myasthenia gravis in a patient with melanoma treated with pembrolizumab: MG exacerbation after Pembrolizumab. Muscle Nerve 54:157–161. https://doi.org/10.1002/mus.25141

    Article  PubMed  Google Scholar 

  108. Zhu J, Li Y (2016) Myasthenia gravis exacerbation associated with pembrolizumab: pembrolizumab and MG. Muscle Nerve 54:506–507. https://doi.org/10.1002/mus.25055

    Article  PubMed  Google Scholar 

  109. March KL, Samarin MJ, Sodhi A, Owens RE (2018) Pembrolizumab-induced myasthenia gravis: a fatal case report. J Oncol Pharm Pract 24:146–149. https://doi.org/10.1177/1078155216687389

    Article  PubMed  Google Scholar 

  110. Gonzalez NL, Puwanant A, Lu A et al (2017) Myasthenia triggered by immune checkpoint inhibitors: new case and literature review. Neuromuscul Disord 27:266–268. https://doi.org/10.1016/j.nmd.2017.01.002

    Article  PubMed  Google Scholar 

  111. Huang Y-T, Chen Y-P, Lin W-C et al (2020) Immune checkpoint inhibitor-induced myasthenia gravis. Front Neurol 11:634. https://doi.org/10.3389/fneur.2020.00634

    Article  PubMed  PubMed Central  Google Scholar 

  112. Johansen A, Christensen SJ, Scheie D et al (2019) Neuromuscular adverse events associated with anti-PD-1 monoclonal antibodies: systematic review. Neurology 92:663–674. https://doi.org/10.1212/WNL.0000000000007235

    Article  CAS  PubMed  Google Scholar 

  113. Cheng W, Sun T, Liu C et al (2021) A systematic review of myasthenia gravis complicated with myocarditis. Brain Behav 11:e2242. https://doi.org/10.1002/brb3.2242

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pathak R, Katel A, Massarelli E, et al (2021) Immune checkpoint inhibitor-induced myocarditis with myositis/myasthenia gravis overlap syndrome: a systematic review of cases. Oncologist. 12):1052–1061. https://doi.org/10.1002/onco.13931

  115. Luo Y-B, Tang W, Zeng Q et al (2021) Case report: the neuromusclar triad of immune checkpoint inhibitors: a case report of myositis, myocarditis, and myasthenia gravis overlap following toripalimab treatment. Front Cardiovasc Med 8:714460. https://doi.org/10.3389/fcvm.2021.714460

    Article  PubMed  PubMed Central  Google Scholar 

  116. Cham J, Ng D, Nicholson L (2021) Durvalumab-induced myocarditis, myositis, and myasthenia gravis: a case report. J Med Case Rep 15:278. https://doi.org/10.1186/s13256-021-02858-7

    Article  PubMed  PubMed Central  Google Scholar 

  117. Matzen E, Bartels LE, Løgstrup B et al (2021) Immune checkpoint inhibitor-induced myocarditis in cancer patients: a case report and review of reported cases. Cardio-Oncology 7:27. https://doi.org/10.1186/s40959-021-00114-x

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lindstrom JM, Seybold ME, Lennon VA et al (1976) Antibody to acetylcholine receptor in myasthenia gravis: prevalence, clinical correlates, and diagnostic value. Neurology 26:1054–1054. https://doi.org/10.1212/WNL.26.11.1054

    Article  CAS  PubMed  Google Scholar 

  119. Mitsune A, Yanagisawa S, Fukuhara T et al (2018) Relapsed myasthenia gravis after nivolumab treatment. Intern Med 57:1893–1897. https://doi.org/10.2169/internalmedicine.9153-17

    Article  PubMed  PubMed Central  Google Scholar 

  120. Safa H, Johnson DH, Trinh VA et al (2019) Immune checkpoint inhibitor related myasthenia gravis: single center experience and systematic review of the literature. J Immunother Cancer 7:319. https://doi.org/10.1186/s40425-019-0774-y

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kumar B, Ballas Z (2018) Adverse events associated with immune checkpoint blockade. N Engl J Med 378:1164. https://doi.org/10.1056/NEJMc1801663

    Article  PubMed  PubMed Central  Google Scholar 

  122. Phua CS, Murad A, Fraser C et al (2020) Myasthenia gravis and concurrent myositis following PD-L1 checkpoint inhibitor for non-small cell lung cancer. BMJ Neurol Open 2:e000028. https://doi.org/10.1136/bmjno-2019-000028

    Article  PubMed  PubMed Central  Google Scholar 

  123. Crusz SM, Radunovic A, Shepherd S et al (2018) Rituximab in the treatment of pembrolizumab-induced myasthenia gravis. Eur J Cancer 102:49–51. https://doi.org/10.1016/j.ejca.2018.07.125

    Article  CAS  PubMed  Google Scholar 

  124. Verma N, Jaffer M, Pina Y et al (2021) Rituximab for immune checkpoint inhibitor myasthenia gravis. Cureus 13:e16337. https://doi.org/10.7759/cureus.16337

    Article  PubMed  PubMed Central  Google Scholar 

  125. Grob D, Brunner N, Namba T, Pagala M (2008) Lifetime course of myasthenia gravis. Muscle Nerve 37:141–149. https://doi.org/10.1002/mus.20950

    Article  PubMed  Google Scholar 

  126. Nakatani Y, Tanaka N, Enami T et al (2018) Lambert-Eaton myasthenic syndrome caused by nivolumab in a patient with squamous cell lung cancer. Case Rep Neurol 10:346–352. https://doi.org/10.1159/000494078

    Article  PubMed  PubMed Central  Google Scholar 

  127. Gill AJ, Gandhy S, Lancaster E (2021) Nivolumab‐associated Lambert‐Eaton myasthenic syndrome and cerebellar dysfunction in a patient with a neuroendocrine tumor. Muscle & Nerve 63:. https://doi.org/10.1002/mus.27141

  128. Dohrn MF, Schöne U, Küppers C et al (2020) Immunoglobulins to mitigate paraneoplastic Lambert Eaton myasthenic syndrome under checkpoint inhibition in Merkel cell carcinoma. Neurol Res Pract 2:52. https://doi.org/10.1186/s42466-020-00099-5

    Article  PubMed  PubMed Central  Google Scholar 

  129. Duplaine A, Prot C, Le-Masson G et al (2021) Myasthenia Gravis Lambert-Eaton overlap syndrome induced by nivolumab in a metastatic melanoma patient. Neurol Sci. https://doi.org/10.1007/s10072-021-05557-9

    Article  PubMed  Google Scholar 

  130. Menzies AM, Johnson DB, Ramanujam S et al (2017) Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann Oncol 28:368–376. https://doi.org/10.1093/annonc/mdw443

    Article  CAS  PubMed  Google Scholar 

  131. Tedbirt B, De Pontville M, Branger P et al (2019) Rechallenge of immune checkpoint inhibitor after pembrolizumab-induced myasthenia gravis. Eur J Cancer 113:72–74. https://doi.org/10.1016/j.ejca.2019.03.006

    Article  PubMed  Google Scholar 

  132. Aldrich J, Pundole X, Tummala S et al (2021) Inflammatory myositis in cancer patients receiving immune checkpoint inhibitors. Arthritis Rheumatol 73:866–874. https://doi.org/10.1002/art.41604

    Article  CAS  PubMed  Google Scholar 

  133. Liewluck T, Kao JC, Mauermann ML (2018) PD-1 Inhibitor-associated myopathies: emerging immune-mediated myopathies. J Immunother 41:208–211. https://doi.org/10.1097/CJI.0000000000000196

    Article  CAS  PubMed  Google Scholar 

  134. Shelly S, Triplett JD, Pinto MV, et al (2020) Immune checkpoint inhibitor-associated myopathy: a clinicoseropathologically distinct myopathy. Brain Commun 2:fcaa181. https://doi.org/10.1093/braincomms/fcaa181

  135. Touat M, Maisonobe T, Knauss S et al (2018) Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology 91:e985–e994. https://doi.org/10.1212/WNL.0000000000006124

    Article  CAS  PubMed  Google Scholar 

  136. Seki M, Uruha A, Ohnuki Y et al (2019) Inflammatory myopathy associated with PD-1 inhibitors. J Autoimmun 100:105–113. https://doi.org/10.1016/j.jaut.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  137. Drobni ZD, Murphy SP, Alvi RM, et al (2021) Association between incidental statin use and skeletal myopathies in patients treated with immune checkpoint inhibitors. Immunotherapy Advances 1:ltab014. https://doi.org/10.1093/immadv/ltab014

  138. Hajem S, Ederhy S, Champiat S et al (2021) Absence of significant clinical benefit for a systematic routine creatine phosphokinase measurement in asymptomatic patients treated with anti-programmed death protein (ligand) 1 immune checkpoint inhibitor to screen cardiac or neuromuscular immune-related toxicities. Eur J Cancer 157:383–390. https://doi.org/10.1016/j.ejca.2021.08.045

    Article  CAS  PubMed  Google Scholar 

  139. Robbins NM, Mozaffar T, Mammen AL et al (2019) Reader response: Pearls & Oy-sters: pembrolizumab-induced myasthenia gravis. Neurology 93:183–184. https://doi.org/10.1212/WNL.0000000000007845

    Article  PubMed  Google Scholar 

  140. Mammen AL, Rajan A, Pak K et al (2019) Pre-existing antiacetylcholine receptor autoantibodies and B cell lymphopaenia are associated with the development of myositis in patients with thymoma treated with avelumab, an immune checkpoint inhibitor targeting programmed death-ligand 1. Ann Rheum Dis 78:150–152. https://doi.org/10.1136/annrheumdis-2018-213777

    Article  CAS  PubMed  Google Scholar 

  141. Anquetil C, Salem J-E, Lebrun-Vignes B et al (2018) Immune checkpoint inhibitor-associated myositis: expanding the spectrum of cardiac complications of the immunotherapy revolution. Circulation 138:743–745. https://doi.org/10.1161/CIRCULATIONAHA.118.035898

    Article  PubMed  Google Scholar 

  142. Delyon J, Brunet-Possenti F, Leonard-Louis S et al (2019) Immune checkpoint inhibitor rechallenge in patients with immune-related myositis. Ann Rheum Dis 78:e129–e129. https://doi.org/10.1136/annrheumdis-2018-214336

    Article  PubMed  Google Scholar 

  143. Petrelli F, Signorelli D, Ghidini M et al (2020) Association of steroids use with survival in patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Cancers (Basel) 12:E546. https://doi.org/10.3390/cancers12030546

    Article  CAS  Google Scholar 

  144. Aldea M, Orillard E, Mansi L et al (2020) How to manage patients with corticosteroids in oncology in the era of immunotherapy? Eur J Cancer 141:239–251. https://doi.org/10.1016/j.ejca.2020.09.032

    Article  CAS  PubMed  Google Scholar 

  145. Paderi A, Gambale E, Botteri C et al (2021) Association of systemic steroid treatment and outcome in patients treated with immune checkpoint inhibitors: a real-world analysis. Molecules 26:5789. https://doi.org/10.3390/molecules26195789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pollack MH, Betof A, Dearden H et al (2018) Safety of resuming anti-PD-1 in patients with immune-related adverse events (irAEs) during combined anti-CTLA-4 and anti-PD1 in metastatic melanoma. Ann Oncol 29:250–255. https://doi.org/10.1093/annonc/mdx642

    Article  CAS  PubMed  Google Scholar 

  147. Dolladille C, Ederhy S, Sassier M et al (2020) Immune checkpoint inhibitor rechallenge after immune-related adverse events in patients with cancer. JAMA Oncol 6:865. https://doi.org/10.1001/jamaoncol.2020.0726

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Marta Simó and Dr. Raul Dominguez for their assistance in the imaging.

Funding

This work was partially supported by a grant from Instituto de Salud Carlos III through the project PI20/00283 (co‐funded by European Regional Development Fund (ERDF)). We also thank CERCA Programme/Generalitat de Catalunya for institutional support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.V., and R.V.; methodology, M.V., and R.V.; and writing—original draft preparation, M.V; writing—review and editing, R.V., and M.V; supervision, R.V.; project administration, R.V.; funding acquisition, R.V. Both authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to R. Velasco.

Ethics declarations

Ethical approval

None.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villagrán-García, M., Velasco, R. Neurotoxicity and safety of the rechallenge of immune checkpoint inhibitors: a growing issue in neuro-oncology practice. Neurol Sci 43, 2339–2361 (2022). https://doi.org/10.1007/s10072-022-05920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05920-4

Keywords

Navigation