Skip to main content

Advertisement

Log in

Freezing of gait: overview on etiology, treatment, and future directions

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Freezing of gait (FOG) is a disabling motor symptom occurring mainly in the advanced stage of Parkinson’s disease (PD).

Methods

This review outlines the clinical manifestation of FOG and its relationship with levodopa treatment, the differential diagnosis with respect to other neurodegenerative and secondary forms and the available treatment.

Results

We report the proposed models explaining the FOG phenomenon and summarize the available knowledge on FOG etiology’s potential genetic contribution. A complete understanding of the mechanisms underlying FOG in PD is essential to find the best therapy. Different treatment options exist but are still not entirely successful, and often a combination of approaches is needed.

Conclusions

Further studies focusing on the potential genetic role in FOG may increase the knowledge on the FOG etiology and pathophysiology, allowing further individualized treatment strategies for this very disabling phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fahn S (1995) The freezing phenomenon in parkinsonism. Adv Neurol 67:53–63

    CAS  PubMed  Google Scholar 

  2. Vercruysse S, Gilat M, Shine JM, Heremans E, Lewis S, Nieuwboer A (2014) Freezing beyond gait in Parkinson’s disease: a review of current neurobehavioral evidence. Neurosci Biobehav Rev 43:213–227

    CAS  PubMed  Google Scholar 

  3. Ackermann H, Grone BF, Hoch G, Schonle PW (1993) Speech freezing in Parkinson’s disease: a kinematic analysis of orofacial movements by means of electromagnetic articulography. Folia Phoniatr (Basel) 45:84–89

    CAS  PubMed  Google Scholar 

  4. Lepore FE, Duvoisin RC (1985) “Apraxia” of eyelid opening: an involuntary levator inhibition. Neurology 35:423–427. https://doi.org/10.1212/wnl.35.3.423

    Article  CAS  PubMed  Google Scholar 

  5. Giladi N, Nieuwboer A (2008) Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov Disord 23(Suppl 2):S423–S425. https://doi.org/10.1002/mds.21927.Erratum.In:MovDisord.23,1639-40

    Article  PubMed  Google Scholar 

  6. Schaafsma JD, Balash Y, Gurevich T, Bartels AL, Hausdorff JM, Giladi N (2003) Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J Neurol 10:391–398. https://doi.org/10.1046/j.1468-1331.2003.00611.x

    Article  CAS  PubMed  Google Scholar 

  7. Perez-Lloret S, Negre-Pages L, Damier P, Delval A, Derkinderen P, Destée A et al (2014) Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol 71:884–890. https://doi.org/10.1001/jamaneurol.2014.753

    Article  PubMed  Google Scholar 

  8. Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, Tanner C (2001) Parkinson Study Group. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology 56:1712–1721. https://doi.org/10.1212/wnl.56.12.1712

    Article  CAS  PubMed  Google Scholar 

  9. Hall JM, Shine JM, O’Callaghan C, Walton CC, Gilat M, Naismith SL, Lewis SJ (2015) Freezing of gait and its associations in the early and advanced clinical motor stages of Parkinson’s disease: a cross-sectional study. J Parkinsons Dis 5:881–891. https://doi.org/10.3233/JPD-150581

    Article  PubMed  Google Scholar 

  10. Ehgoetz Martens KA, Silveira CRA, Intzandt BN, Almeida QJ (2018) Overload from anxiety: a non-motor cause for gait impairments in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 30:77–80. https://doi.org/10.1176/appi.neuropsych.16110298

    Article  PubMed  Google Scholar 

  11. Zhang H, Yin X, Ouyang Z, Chen J, Zhou S, Zhang C et al (2016) A prospective study of freezing of gait with early Parkinson disease in Chinese patients. Medicine (Baltimore) 95:e4056. https://doi.org/10.1097/MD.0000000000004056

    Article  Google Scholar 

  12. Naismith SL, Shine JM, Lewis SJ (2010) The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Mov Disord 25:1000–1004. https://doi.org/10.1002/mds.23005

    Article  PubMed  Google Scholar 

  13. Lim I, van Wegen E, Jones D, Rochester L, Nieuwboer A, Willems AM et al (2008) Identifying fallers with Parkinson’s disease using home-based tests: who is at risk? Mov Disord 23:2411–2415. https://doi.org/10.1002/mds.22209

    Article  PubMed  Google Scholar 

  14. Moore O, Peretz C, Giladi N (2007) Freezing of gait affects quality of life of peoples with Parkinson’s disease beyond its relationships with mobility and gait. Mov Disord 22:2192–2195. https://doi.org/10.1002/mds.21659

    Article  PubMed  Google Scholar 

  15. Fasano A, Aquino CC, Krauss JK, Honey CR, Bloem BR (2015) Axial disability and deep brain stimulation in patients with Parkinson disease. Nat Rev Neurol 11:98–110

    PubMed  Google Scholar 

  16. Hausdorff JM, Schaafsma JD, Balash Y, Bartels AL, Gurevich T, Giladi N (2003) Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp Brain Res 149:187–194. https://doi.org/10.1007/s00221-002-1354-8

    Article  CAS  PubMed  Google Scholar 

  17. Plotnik M, Giladi N, Dagan Y, Hausdorff JM (2011) Postural instability and fall risk in Parkinson’s disease: impaired dual tasking, pacing, and bilateral coordination of gait during the “ON” medication state. Exp Brain Res 210:529–538. https://doi.org/10.1007/s00221-011-2551-0

    Article  PubMed  Google Scholar 

  18. Snijders AH, Nijkrake MJ, Bakker M, Munneke M, Wind C, Bloem BR (2008) Clinimetrics of freezing of gait. Mov Disord 23:S468–S474. https://doi.org/10.1002/mds.22144.Erratum.In:MovDisord.23,1639-40

    Article  PubMed  Google Scholar 

  19. Fahn, S (1995) The freezing phenomenon in Parkinsonism. In: Fahn S, Hallett M, Luders HO, Marsden CD, eds. Negative motor phenomena. Adv Neurol, Vol. 67. Lippincott-Raven Publishers, Philadelphia, 53–63

  20. Camicioli R, Oken BS, Sexton G, Kaye JA, Nutt JG (1998) Verbal fluency task affects gait in Parkinson’s disease with motor freezing. J Geriatr Psychiatry Neurol 11(4):181–5. https://doi.org/10.1177/089198879901100403

    Article  CAS  PubMed  Google Scholar 

  21. Giladi N, McMahon D, Przedborski S, Flaster E, Guillory S, Kostic V, Fahn S (1992) Motor blocks in Parkinson’s disease. Neurology 42(2):333–339. https://doi.org/10.1212/wnl.42.2.333

    Article  CAS  PubMed  Google Scholar 

  22. Espay AJ, Fasano A, van Nuenen BF, Payne MM, Snijders AH, Bloem BR (2012) “On” state freezing of gait in Parkinson disease: a paradoxical levodopa-induced complication. Neurology 78(7):454–457. https://doi.org/10.1212/WNL.0b013e3182477ec0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ehgoetz Martens KA, Shine JM, Walton CC, Georgiades MJ, Gilat M, Hall JM et al (2018) Evidence for subtypes of freezing of gait in Parkinson’s disease. Mov Disord 33:1174–1178. https://doi.org/10.1002/mds.27417

    Article  PubMed  Google Scholar 

  24. Andrews CJ (1973) Influence of dystonia on the response to long-term L-DOPA therapy in Parkinson’s disease. J Neurol Neurosurg Psychiatry 36:630–636

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ambani LM, Van Woert MH (1973) Start hesitation—a side effect of long-term levodopa therapy. N Engl J Med 288:1113–1115

    CAS  PubMed  Google Scholar 

  26. Snijders AH, Takakusaki K, Debu B, Lozano AM, Krishna V, Fasano A et al (2016) Physiology of freezing of gait. Ann Neurol 80:644–659

    PubMed  Google Scholar 

  27. Fasano A, Lang AE (2015) Unfreezing of gait in patients with Parkinson’s disease. Lancet Neurol 14:675–677. https://doi.org/10.1016/S1474-4422(15)00053-8

    Article  PubMed  Google Scholar 

  28. Nonnekes J, Bloem BR (2020) Biphasic levodopa-induced freezing of gait in Parkinson’s disease. J Parkinsons Dis 10:1245–1248. https://doi.org/10.3233/JPD-201997

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perez Parra S, McKay JL, Factor SA (2020) Diphasic worsening of freezing of gait in Parkinson’s disease. Mov Disord Clin Pract 7:325–328. https://doi.org/10.1002/mdc3.12918

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kompoliti K, Goetz CG, Leurgans S, Morrissey M, Siegel IM (2000) ‘“On”’ freezing in Parkinson’s disease: resistance to visual cue walking devices. Mov Disord 15:309–312

    CAS  PubMed  Google Scholar 

  31. DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24. https://doi.org/10.1001/archneur.64.1.20

    Article  PubMed  Google Scholar 

  32. Lewis SJ, Barker RA (2009) A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 15:333–338. https://doi.org/10.1016/j.parkreldis.2008.08.006

    Article  PubMed  Google Scholar 

  33. Bohnen NI, Kanel P, Zhou Z, Koeppe RA, Frey KA, Dauer WT et al (2019) Cholinergic system changes of falls and freezing of gait in Parkinson’s disease. Ann Neurol 85:538–549. https://doi.org/10.1002/ana.25430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brooks VB, Stoney SD Jr (1971) Motor mechanisms: the role of the pyramidal system in motor control. Annu Rev Physiol 33:337–392

    CAS  PubMed  Google Scholar 

  35. Takakusaki K (2013) Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord 28:1483–1491

    PubMed  Google Scholar 

  36. Nieuwboer A, Giladi N (2013) Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Mov Disord 28:1509–1519

    PubMed  Google Scholar 

  37. Vandenbossche J, Deroost N, Soetens E, Coomans D, Spildooren J, Vercruysse S et al (2012) Freezing of gait in Parkinson’s disease: disturbances in automaticity and control. Front Hum Neurosci 6:356

    PubMed  Google Scholar 

  38. Plotnik M, Giladi N, Hausdorff JM (2012) Is freezing of gait in Parkinson’s disease a result of multiple gait impairments? Implications for treatment. Parkinsons Dis 2012:459321

    PubMed  PubMed Central  Google Scholar 

  39. Lewis SJ, Shine JM (2016) The next step: a common neural mechanism for freezing of gait. Neuroscientist 22:72–82. https://doi.org/10.1177/1073858414559101

    Article  PubMed  Google Scholar 

  40. Jacobs JV, Nutt JG, Carlson-Kuhta P, Stephens M, Horak FB (2009) Knee trembling during freezing of gait represents multiple anticipatory postural adjustments. Exp Neurol 215:334–341

    PubMed  Google Scholar 

  41. Georgiades MJ, Shine JM, Gilat M, McMaster J, Owler B, Mahant N, Lewis SJG (2019) Hitting the brakes: pathological subthalamic nucleus activity in Parkinson’s disease gait freezing. Brain 142:3906–3916. https://doi.org/10.1093/brain/awz325

    Article  PubMed  Google Scholar 

  42. Pozzi NG, Canessa A, Palmisano C, Brumberg J, Steigerwald F, Reich MM et al (2019) Freezing of gait in Parkinson’s disease reflects a sudden derangement of locomotor network dynamics. Brain 142:2037–2050

    PubMed  PubMed Central  Google Scholar 

  43. Bostan AC, Dum RP, Strick PL (2013) Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci 17:241–254. https://doi.org/10.1016/j.tics.2013.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gilat M, Dijkstra BW, D’Cruz N, Nieuwboer A, Lewis SJG (2019) Functional MRI to study gait impairment in Parkinson’s disease: a systematic review and exploratory ALE meta-analysis. Curr Neurol Neurosci Rep 19:49. https://doi.org/10.1007/s11910-019-0967-2

    Article  PubMed  Google Scholar 

  45. Bharti K, Suppa A, Pietracupa S, Upadhyay N, Giannì C, Leodori G et al (2019) Abnormal cerebellar connectivity patterns in patients with Parkinson’s disease and freezing of gait. Cerebellum 18:298–308. https://doi.org/10.1007/s12311-018-0988-4

    Article  PubMed  Google Scholar 

  46. Piramide N, Agosta F, Sarasso E, Canu E, Volontè MA, Filippi M (2020) Brain activity during lower limb movements in Parkinson’s disease patients with and without freezing of gait. J Neurol 267:1116–1126. https://doi.org/10.1007/s00415-019-09687-1

    Article  PubMed  Google Scholar 

  47. Tard C, Delval A, Devos D, Lopes R, Lenfant P, Dujardin K et al (2015) Brain metabolic abnormalities during gait with freezing in Parkinson’s disease. Neuroscience 29(307):281–301. https://doi.org/10.1016/j.neuroscience.2015.08.063

    Article  CAS  Google Scholar 

  48. Bharti K, Suppa A, Tommasin S, Zampogna A, Pietracupa S, Berardelli A, Pantano P (2019) Neuroimaging advances in Parkinson’s disease with freezing of gait: a systematic review. Neuroimage Clin 24:102059. https://doi.org/10.1016/j.nicl.2019.102059

    Article  PubMed  PubMed Central  Google Scholar 

  49. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, International LRRK2 Consortium et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7:583–90. https://doi.org/10.1016/S1474-4422(08)70117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marras C, Schüle B, Munhoz RP, Rogaeva E, Langston JW, Kasten M et al (2011) Phenotype in parkinsonian and nonparkinsonian LRRK2 G2019S mutation carriers. Neurology. 77, 325-33. https://doi.org/10.1212/WNL.0b013e318227042d. Erratum in: Neurology. 77, 1501. Schuele, B [corrected to Schüle, B]

  51. Alcalay RN, Mejia-Santana H, Tang MX, Rosado L, Verbitsky M, Kisselev S et al (2009) Motor phenotype of LRRK2 G2019S carriers in early-onset Parkinson disease. Arch Neurol 66:1517–1522. https://doi.org/10.1001/archneurol.2009.267

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mirelman A, Heman T, Yasinovsky K, Thaler A, Gurevich T, Marder K, LRRK2 Ashkenazi Jewish Consortium et al (2013) Fall risk and gait in Parkinson’s disease: the role of the LRRK2 G2019S mutation. Mov Disord 28:1683–90. https://doi.org/10.1002/mds.25587

    Article  CAS  PubMed  Google Scholar 

  53. Mirelman A, Gurevich T, Giladi N, Bar-Shira A, Orr-Urtreger A, Hausdorff JM (2011) Gait alterations in healthy carriers of the LRRK2 G2019S mutation. Ann Neurol 69:193–197. https://doi.org/10.1002/ana.22165

    Article  PubMed  Google Scholar 

  54. Thaler A, Mirelman A, Gurevich T, Simon E, Orr-Urtreger A, Marder K, LRRK2 Ashkenazi Jewish Consortium et al (2012) Lower cognitive performance in healthy G2019S LRRK2 mutation carriers. Neurology 79:1027–32. https://doi.org/10.1212/WNL.0b013e3182684646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. da Silva CP, de M Abreu Gabriella, Cabello Acero PH, Júnior MC, Pereira JS et al (2017) Clinical profiles associated with LRRK2 and GBA mutations in Brazilians with Parkinson’s disease. J Neurol Sci 381(160):164. https://doi.org/10.1016/j.jns.2017.08.3249

    Article  CAS  Google Scholar 

  56. Wang C, Cai Y, Gu Z, Ma J, Zheng Z, Tang BS, Chinese Parkinson Study Group et al (2014) Clinical profiles of Parkinson’s disease associated with common leucine-rich repeat kinase 2 and glucocerebrosidase genetic variants in Chinese individuals. Neurobiol Aging 35:725.e1–6. https://doi.org/10.1016/j.neurobiolaging.2013.08.012

    Article  CAS  Google Scholar 

  57. Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M, Mencacci NE et al (2013) Parkin disease: a clinicopathologic entity? JAMA Neurol 70:571–579. https://doi.org/10.1001/jamaneurol.2013.172

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tekin I, Carkaci-Salli N, Lewis MM, Mailman RB, Huang X, Vrana KE (2016) The V81M variant of tyrosine hydroxylase is associated with more severe freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 23:86–90. https://doi.org/10.1016/j.parkreldis.2015.12.015

    Article  PubMed  Google Scholar 

  59. Kim R, Lee J, Kim Y, Kim A, Jang M, Kim HJ et al (2018) Presynaptic striatal dopaminergic depletion predicts the later development of freezing of gait in de novo Parkinson’s disease: an analysis of the PPMI cohort. Parkinsonism Relat Disord 51:49–54. https://doi.org/10.1016/j.parkreldis.2018.02.047

    Article  PubMed  Google Scholar 

  60. Wang L, Yuan Y, Wang J, Shen Y, Zhi Y, Li J et al (2019) Allelic variant in SLC6A3rs393795 affects cerebral regional homogeneity and gait dysfunction in patients with Parkinson’s disease. PeerJ 4(7):e7957. https://doi.org/10.7717/peerj.7957

    Article  Google Scholar 

  61. Moreau C, Meguig S, Corvol JC, Labreuche J, Vasseur F, Duhamel A, Parkgait-II Study Group et al (2015) Polymorphism of the dopamine transporter type 1 gene modifies the treatment response in Parkinson’s disease. Brain 138:1271–83. https://doi.org/10.1093/brain/awv063

    Article  PubMed  PubMed Central  Google Scholar 

  62. Miller NS, Chou KL, Bohnen NI, Müller MLTM, Seidler RD (2018) Dopaminergic polymorphisms associated with medication responsiveness of gait in Parkinson’s disease. Parkinsonism Relat Disord 48:54–60. https://doi.org/10.1016/j.parkreldis.2017.12.010

    Article  PubMed  Google Scholar 

  63. Ebersbach G, Moreau C, Gandor F, Defebvre L, Devos D (2013) Clinical syndromes: parkinsonian gait. Mov Disord 28:1552–1559. https://doi.org/10.1002/mds.25675

    Article  PubMed  Google Scholar 

  64. Mehanna R, Jankovic J (2013) Movement disorders in cerebrovascular disease. Lancet Neurol 12:597–608

    PubMed  Google Scholar 

  65. Benamer HT, Grosset DG (2009) Vascular parkinsonism: a clinical review. Eur Neurol 61:11–15

    PubMed  Google Scholar 

  66. Sudarsky L, Ronthal M (1983) Gait disorders among elderly patients. A survey study of 50 patients. Arch Neurol 40:740–743

    CAS  PubMed  Google Scholar 

  67. Nutt JG, Marsden CD, Thompson PD (1993) Human walking and higher-level gait disorders, particularly in the elderly. Neurology 43:268–279

    CAS  PubMed  Google Scholar 

  68. Achiron A, Ziv I, Goren M, Goldberg H, Zoldan Y, Sroka H et al (1993) Primary progressive freezing gait. Mov Disord 8:293–297. https://doi.org/10.1002/mds.870080307

    Article  CAS  PubMed  Google Scholar 

  69. Factor SA, Jennings DL, Molho ES, Marek KL (2002) The natural history of the syndrome of primary progressive freezing gait. Arch Neurol 59:1778–1783. https://doi.org/10.1001/archneur.59.11.1778

    Article  PubMed  Google Scholar 

  70. Park HK, Lim YM, Kim JS, Lee MC, Kim SM et al (2010) Kim BJ, Kim KK. Nigrostriatal dysfunction in patients with amyotrophic lateral sclerosis and parkinsonism. J Neurol Sci 301:12–13. https://doi.org/10.1016/j.jns.2010.11.017

    Article  PubMed  Google Scholar 

  71. Noda K, Hattori N, Okuma Y, Yamamoto T (2017) Chronic subdural haematoma presenting as freezing of gait. BMJ Case Rep 26:bcr2017221469. https://doi.org/10.1136/bcr-2017-221469

    Article  Google Scholar 

  72. Brix MK, Westman E, Simmons A, Ringstad GA, Eide PK, Wagner-Larsen K et al (2017) Evans’ index revisited: new cut-off levels for use in radiological assessment of ventricular enlargement in the elderly. Eur J Radiol 95:28–32. https://doi.org/10.1016/j.ejrad.2017.07.013

    Article  PubMed  Google Scholar 

  73. Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H (2008) Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected byaxial and coronal MRI. Neuroradiology 2008(50):117–122

    Google Scholar 

  74. Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T (1998) CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 19:1277–1284

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Factora R, Luciano M (2008) When to consider normal pressure hydrocephalus in the patient with gait disturbance. Geriatrics 63:32–37

    PubMed  Google Scholar 

  76. Stolze H, Kuhtz-Buschbeck JP, Drucke H, Johnk K, Illert M, Deuschl G (2001) Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry 70:289–297

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Feve AP, Fenelon G, Wallays C, Remy P, Guillard A (1993) Axial motor disturbances after hypoxic lesions of the globus pallidus. Mov Disord 8:321–326

    CAS  PubMed  Google Scholar 

  78. Klawans HL, Stein RW, Tanner CM, Goetz CG (1982) A pure parkinsonian syndrome following acute carbon monoxide intoxication. Arch Neurol 39:302–304

    CAS  PubMed  Google Scholar 

  79. Huang CC, Lu CS, Chu NS, Hochberg F, Lilienfeld D, Olanow W, Calne DB (1993) Progression after chronic manganese exposure. Neurology 43:1479–1483. https://doi.org/10.1212/wnl.43.8.1479

    Article  CAS  PubMed  Google Scholar 

  80. Leopold NA, Bara-Jimenez W, Hallett M (1999) Parkinsonism after a wasp sting. Mov Disord 14:122–127

    CAS  PubMed  Google Scholar 

  81. Dale ML, Mancini M, Curtze C, Horak FB, Fling BW (2016) Freezing of gait associated with a corpus callosum lesion. J Clin Mov Disord 29(3):2. https://doi.org/10.1186/s40734-016-0030-2

    Article  Google Scholar 

  82. Fasano A, Laganiere SE, Lam S, Fox MD (2017) Lesions causing freezing of gait localize to a cerebellar functional network. Ann Neurol 81:129–141. https://doi.org/10.1002/ana.24845

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fasano A, Herman T, Tessitore A, Strafella AP, Bohnen NI (2015) Neuroimaging of freezing of gait. J Parkinsons Dis 5(2):241–254. https://doi.org/10.3233/JPD-150536

    Article  PubMed  PubMed Central  Google Scholar 

  84. Daum C, Hubschmid M, Aybek S (2014) The value of ‘positive’ clinical signs for weakness, sensory and gait disorders in conversion disorder: a systematic and narrative review. J Neurol Neurosurg Psychiatry 85:180–190. https://doi.org/10.1136/jnnp-2012-304607

    Article  PubMed  Google Scholar 

  85. Daum C, Gheorghita F, Spatola M, Stojanova V, Medlin F, Vingerhoets F, Berney A, Gholam-Rezaee M, Maccaferri GE, Hubschmid M, Aybek S (2015) Interobserver agreement and validity of bedside ‘positive signs’ for functional weakness, sensory and gait disorders in conversion disorder: a pilot study. J Neurol Neurosurg Psychiatry 86:425–430. https://doi.org/10.1136/jnnp-2013-307381

    Article  PubMed  Google Scholar 

  86. Onofrj M, Thomas A, Tiraboschi P, Wenning G, Gambi F, Sepede G, Di Giannantonio M, Di Carmine C, Monaco D, Maruotti V, Ciccocioppo F, D’Amico MC, Bonanni L (2011) Updates on somatoform disorders (SFMD) in Parkinson’s disease and dementia with Lewy bodies and discussion of phenomenology. J Neurol Sci 310:166–171. https://doi.org/10.1016/j.jns.2011.07.010

    Article  PubMed  Google Scholar 

  87. Wissel BD, Dwivedi AK, Merola A, Chin D, Jacob C, Duker AP, Vaughan JE, Lovera L, LaFaver K, Levy A, Lang AE, Morgante F, Nirenberg MJ, Stephen C, Sharma N, Romagnolo A, Lopiano L, Balint B, Yu XX, Bhatia KP, Espay AJ (2018) Functional neurological disorders in Parkinson disease. J Neurol Neurosurg Psychiatry 89:566–571. https://doi.org/10.1136/jnnp-2017-317378

    Article  PubMed  Google Scholar 

  88. Tinazzi M, Geroin C, Erro R, Marcuzzo E, Cuoco S, Ceravolo R, Mazzucchi S, Pilotto A, Padovani A, Romito LM, Eleopra R, Zappia M, Nicoletti A, Dallocchio C, Arbasino C, Bono F, Pascarella A, Demartini B, Gambini O, Modugno N, Olivola E, Bonanni L, Antelmi E, Zanolin E, Albanese A, Ferrazzano G, de Micco R, Lopiano L, Calandra-Buonaura G, Petracca M, Esposito M, Pisani A, Manganotti P, Stocchi F, Coletti Moja M, Antonini A, Ercoli T, Morgante F (2021) Functional motor disorders associated with other neurological diseases: beyond the boundaries of “organic” neurology. Eur J Neurol 28:1752–1758. https://doi.org/10.1111/ene.14674

    Article  PubMed  Google Scholar 

  89. Amboni M, Barone P, Picillo M, Cozzolino A, Longo K, Erro R, Iavarone A (2010) A two-year follow-up study of executive dysfunctions in parkinsonian patients with freezing of gait at on-state. Mov Disord 30:800–802. https://doi.org/10.1002/mds.23033

    Article  Google Scholar 

  90. Giladi N, Mc Dermott MP, Fahn S, Przedborski S, Jankovic J, Stern M et al (2001) Freezing of gait: clinical overview. Adv Neurol 87:191–198

    CAS  PubMed  Google Scholar 

  91. Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR (2015) Freezing of gait: a practical approach to management. Lancet Neurol 14:768–778

    PubMed  Google Scholar 

  92. Gao C, Liu J, Tan Y, Chen S (2020) Freezing of gait in Parkinson’s disease: pathophysiology, risk factors and treatments. Transl Neurodegener 15(9):12. https://doi.org/10.1186/s40035-020-00191-5

    Article  Google Scholar 

  93. Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 15(5):242. https://doi.org/10.3389/fneur.2014.00242

    Article  Google Scholar 

  94. Cossu G, Ricchi V, Pilleri M, Mancini F, Murgia D, Ricchieri G et al (2015) Levodopa-carbidopa intrajejunal gel in advanced Parkinson disease with “on” freezing of gait. Neurol Sci 36:1683–1686

    PubMed  Google Scholar 

  95. Zibetti M, Angrisano S, Dematteis F, Artusi CA, Romagnolo A, Merola A, Lopiano L (2018) Effects of intestinal levodopa infusion on freezing of gait in Parkinson disease. J Neurol Sci 385:105–108

    CAS  PubMed  Google Scholar 

  96. Sensi M, Preda F, Trevisani L, Contini E, Gragnaniello D, Capone JG et al (2014) Emerging issues on selection criteria of levodopa carbidopa infusion therapy: considerations on outcome of 28 consecutive patients. J Neural Transm (Vienna) 121:633–642

    CAS  Google Scholar 

  97. Chang FC, Tsui DS, Mahant N, Wolfe N, Kim SD, Ha AD et al (2015) 24 h levodopa-carbidopa intestinal gel may reduce falls and “unresponsive” freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 21:317

    PubMed  Google Scholar 

  98. Zhang LL, Canning SD, Wang XP (2016) Freezing of gait in parkinsonism and its potential drug treatment. Curr Neuropharmacol 14:302–306. https://doi.org/10.2174/1570159x14666151201190040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kondo T (1984) D, L-threo-3,4-dihydroxyphenylserine (D, L-threo-DOPS) treatment on the patients with Parkinson’s disease or pure akinesia]. Rinsho Shinkeigaku 24:280–288

    CAS  PubMed  Google Scholar 

  100. Zhao Y, Nonnekes J, Storcken EJ, Janssen S, van Wegen EE, Bloem BR et al (2016) Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease. J Neurol 263:1156–1165. https://doi.org/10.1007/s00415-016-8115-2

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ginis P, Nackaerts E, Nieuwboer A, Heremans E (2018) Cueing for people with Parkinson’s disease with freezing of gait: a narrative review of the state-of-the-art and novel perspectives. Ann Phys Rehabil Med 61:407–413. https://doi.org/10.1016/j.rehab.2017.08.002

    Article  PubMed  Google Scholar 

  102. Murgia M, Pili R, Corona F, Sors F, Agostini TA, Bernardis P et al (2018) The use of footstep sounds as rhythmic auditory stimulation for gait rehabilitation in parkinson’s disease: a randomized controlled trial. Front Neurol 24(9):348

    Google Scholar 

  103. De Lima A, Evers LJ, Hahn T et al (2017) Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: a systematic review. J Neurol 264:1642–1654

    Google Scholar 

  104. Kim Y, Shin IS, Moon H, Lee SC, Yoon S (2019) Effects of non-invasive brain stimulation on freezing of gait in parkinsonism: a systematic review with meta-analysis. Parkinsonism Relat Disord 64:82–89

    PubMed  Google Scholar 

  105. Pau M, Corona F, Pili R, Casula C, Sors F, Agostini T et al (2016) Effects of physical rehabilitation integrated with rhythmic auditory stimulation on spatio-temporal and kinematic parameters of gait in Parkinson’s disease. Front Neurol 11(7):126

    Google Scholar 

  106. Porta M, Pilloni G, Pili R, Casula C, Murgia M, Cossu G, Pau M (2018) Association between objectively measured physical activity and gait patterns in people with Parkinson’s disease: results from a 3-month monitoring. Parkinsons Dis 17(2018):7806574. https://doi.org/10.1155/2018/7806574

    Article  Google Scholar 

  107. Cosentino C, Baccini M, Putzolu M, Ristori D, Avanzino L, Pelosin E (2020) Effectiveness of physiotherapy on freezing of gait in Parkinson’s disease: a systematic review and meta-analyses. Mov Disord 35:523–536. https://doi.org/10.1002/mds.27936

    Article  PubMed  Google Scholar 

  108. Nieuwboer A (2014) How self-evident is evidence-based practice in physiotherapy? Physiother Res Int 9:iii–iv. https://doi.org/10.1002/pri.302

    Article  Google Scholar 

  109. Deuschl G, Schade-Brittinger C, Krack P et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908

    CAS  PubMed  Google Scholar 

  110. Baizabal-Carvallo JF, Jankovic J (2016) Movement disorders induced by deep brain stimulation. Parkinsonism Relat Disord 25:1–9

    PubMed  Google Scholar 

  111. Xie T, Vigil J, MacCracken E, Gasparaitis A, Young J, Kang W et al (2015) Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology 84:415–420. https://doi.org/10.1212/WNL.0000000000001184

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tommasi G, Lopiano L, Zibetti M et al (2007) Freezing and hypokinesia of gait induced by stimulation of the subthalamic region. J Neurol Sci 258:99–103

    PubMed  Google Scholar 

  113. Adams C, Keep M, Martin K, McVicker J, Kumar R (2011) Acute induc- tion of levodopa-resistant freezing of gait upon subthalamic nucleus electrode implantation. Parkinsonism Relat Disord 17:488–490

    PubMed  Google Scholar 

  114. Horstink M, Tolosa E, Bonuccelli U et al (2006) Review of the therapeutic management of Parkinson’s disease. Report of a joint task force of the European Federation of Neurological Societies (EFNS) and the Movement Disorder Society-European Section (MDS-ES). Part II: late (complicated) Parkinson’s disease. Eur J Neurol 13:1186–1202

    CAS  PubMed  Google Scholar 

  115. Barbe MT, Tonder L, Krack P, Debû B, Schüpbach M, Paschen SEARLYSTIM, study group. et al (2020) Deep brain stimulation for freezing of gait in Parkinson’s disease with early motor complications. Mov Disord 35:82–90. https://doi.org/10.1002/mds.27892

    Article  PubMed  Google Scholar 

  116. Cossu MP (2017) Subthalamic nucleus stimulation and gait in Parkinson’s disease: a not always fruitful relationship. Gait Posture 52:205–210. https://doi.org/10.1016/j.gaitpost.2016.11.039

    Article  PubMed  Google Scholar 

  117. Chenji G, Wright ML, Chou KL, Seidler RD, Patil PG (2017) Parkinsonian gait improves with bilateral subthalamic nucleus deep brain stimulation during cognitive multi-tasking. Parkinsonism Relat Disord 38:72–79. https://doi.org/10.1016/j.parkreldis.2017.02.028

    Article  PubMed  Google Scholar 

  118. Fasano A, Daniele A, Albanese A (2012) Treatment of motor and non- motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 11:429–442. https://doi.org/10.1016/S1474-4422(12)70049-2

    Article  PubMed  Google Scholar 

  119. Vercruysse S, Vandenberghe W, Münks L, Nuttin B, Devos H, Nieuwboer A (2014) Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson’s disease: a prospective controlled study. J Neurol Neurosurg Psychiatr 85:871–877. https://doi.org/10.1136/jnnp-2013-306336

    Article  CAS  Google Scholar 

  120. Rocchi L, Carlson-Kuhta P, Chiari L, Burchiel KJ, Hogarth P, Horak FB (2012) Effects of deep brain stimulation in the subthalamic nucleus or globus pallidus internus on step initiation in Parkinson disease: laboratory investigation. J Neurosurg 117:1141–1149. https://doi.org/10.3171/2012.8.JNS112006

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ferraye MU, Debu B, Fraix V, Xie-Brustolin J, Chabarde S, Krack P et al (2008) Effects of subthalamic nucleus stimulation and levodopa on freezing of gait in Parkinson disease. Neurology 70:1431–1437

    CAS  PubMed  Google Scholar 

  122. Cossu G, Sensi M (2017) Deep brain stimulation emergencies: how the new technologies could modify the current scenario. Curr Neurol Neurosci Rep 17:51

    PubMed  Google Scholar 

  123. St George RJ, Nutt JG, Burchiel KJ, Horak FB (2010) A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology 75:1292–1299. https://doi.org/10.1212/WNL.0b013e3181f61329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, Plewnia C, Bender B, Gharabaghi A, Wächter T, Krüger R (2013) Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain 136:2098–2108. https://doi.org/10.1093/brain/awt122

    Article  PubMed  PubMed Central  Google Scholar 

  125. Valldeoriola F, Muñoz E, Rumià J, Roldán P, Cámara A, Compta Y, Martí MJ, Tolosa E (2019) Simultaneous low-frequency deep brain stimulation of the substantia nigra pars reticulata and high-frequency stimulation of the subthalamic nucleus to treat levodopa unresponsive freezing of gait in Parkinson’s disease: a pilot study. Parkinsonism Relat Disord 60:153–157. https://doi.org/10.1016/j.parkreldis.2018.09.008

    Article  PubMed  Google Scholar 

  126. Wang JW, Zhang YQ, Zhang XH, Wang YP, Li JP, Li YJ (2017) Deep brain stimulation of pedunculopontine nucleus for postural instability and gait disorder after parkinson disease: a meta-analysis of individual patient data. World Neurosurg 102:72–78. https://doi.org/10.1016/j.wneu.2017.02.110

    Article  PubMed  Google Scholar 

  127. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S, Tropepi D et al (2017) Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130:1596–1607. https://doi.org/10.1093/brain/awl346

    Article  Google Scholar 

  128. Lee SY, Kim MS, Chang WH, Cho JW, Youn JY, Kim YH (2014) Effects of repetitive transcranial magnetic stimulation on freezing of gait in patients with Parkinsonism. Restor Neurol Neurosci 32:743–753. https://doi.org/10.3233/RNN-140397

    Article  PubMed  Google Scholar 

  129. Kim MS, Chang WH, Cho JW, Youn J, Kim YK, Kim SW, Kim YH (2015) Efficacy of cumulative high-frequency rTMS on freezing of gait in Parkinson’s disease. Restor Neurol Neurosci 33:521–530. https://doi.org/10.3233/RNN-140489

    Article  PubMed  PubMed Central  Google Scholar 

  130. Valentino F, Cosentino G, Brighina F, Pozzi NG, Sandrini G, Fierro B, Savettieri G, D’Amelio M, Pacchetti C (2014) Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study. Mov Disord 29:1064–1069. https://doi.org/10.1002/mds.25897

    Article  PubMed  Google Scholar 

  131. Lu C, Amundsen Huffmaster SL, Tuite PJ, MacKinnon CD (2018) The effects of anodal tDCS over the supplementary motor area on gait initiation in Parkinson’s disease with freezing of gait: a pilot study. J Neurol 265:2023–2032. https://doi.org/10.1007/s00415-018-8953-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MF and ADF contributed to the conception of the review. MF, GC, and ADF wrote the first draft of the manuscript, contributed to manuscript revision, read, and approved the submitted version.

Corresponding author

Correspondence to Marika Falla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

None.

Informed consent

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falla, M., Cossu, G. & Di Fonzo, A. Freezing of gait: overview on etiology, treatment, and future directions. Neurol Sci 43, 1627–1639 (2022). https://doi.org/10.1007/s10072-021-05796-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05796-w

Keywords

Navigation