Skip to main content

Advertisement

Log in

Optical coherence tomography angiography findings in Huntington’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the retinal and choriocapillaris vascular networks in macular region and the central choroidal thickness (CCT) in patients affected by Huntington disease (HD), using optical coherence tomography angiography (OCTA) and enhanced depth imaging spectral-domain OCT (EDI SD-OCT).

Methods

We assessed the vessel density (VD) in superficial capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris (CC) using OCTA, while CCT was measured by EDI SD-OCT.

Results

Sixteen HD patients (32 eyes) and thirteen healthy controls (26 eyes) were enrolled in this prospective study. No significant difference in retinal and choriocapillaris VD was found between HD patients and controls while CCT turned to be thinner in patients respect to controls. There were no significant relationships between OCTA findings and neurological parameters.

Conclusion

The changes in choroidal structure provide useful information regarding the possible neurovascular involvement in the physiopathology of HD. Choroidal vascular network could be a useful parameter to evaluate the vascular impairment that occurs in this neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Walker FO (2007) Huntington's disease. Lancet 369:218–228

    Article  CAS  Google Scholar 

  2. Tabrizi SJ, Ghosh R, Blair R, Leavitt BR (2019) Huntingtin lowering strategies for disease modification in Huntington's disease. Neuron 101:801–819

    Article  CAS  Google Scholar 

  3. Zeun P, Scahill RI, Tabrizi SJ, Wild EJ (2019) Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 97:67–80

    Article  CAS  Google Scholar 

  4. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee M, Flotte T, Gregory K, Puliafito C (1991) Optical coherence tomography. Science 254:1178–1181

    Article  CAS  Google Scholar 

  5. Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58:387–429

    Article  Google Scholar 

  6. Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ (2011) Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol 31:362–373

    Article  Google Scholar 

  7. Kersten HM, Danesh-Meyer HV, Kilfoyle DH, Roxburgh RH (2015) Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression. J Neurol 262:2457–2465

    Article  CAS  Google Scholar 

  8. Andrade C, Beato J, Monteiro A, Costa A, Penas S, Guimarães J (2016) Spectral-domain optical coherence tomography as a potential biomarker in Huntington's disease. Mov Disord 31:377–783

    Article  Google Scholar 

  9. Lin CY, Hsu YH, Lin MH, Yang TH, Chen HM, Chen YC, Hsiao HY, Chen CC, Chern Y, Chang C (2013) Neurovascular abnormalities in humans and mice with Huntington's disease. Exp Neurol 250:20–30

    Article  CAS  Google Scholar 

  10. Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL, Calon F, Lacroix S, Gowland PA, Francis ST, Barker RA, Cicchetti F (2015) Cerebrovascular and blood-brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol 78:160–177

    Article  Google Scholar 

  11. Patton N, Aslam T, MacGillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206:319–348

    Article  Google Scholar 

  12. London A, Benhar I, Schwartz M (2013) The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol 9:44–53

    Article  CAS  Google Scholar 

  13. Wang Q, Chan S, Yang JY, You B, Wang YX, Jonas JB, Wei WB (2016) Vascular density in retina and choriocapillaris as measured by optical coherence tomography angiography. Am J Ophthalmol 168:95–109

    Article  Google Scholar 

  14. Kniestedt C, Stamper RL (2003) Visual acuity and its measurement. Ophthalmol Clin N Am 16:155–170

    Article  Google Scholar 

  15. Lanzillo R, Cennamo G, Criscuolo C, Carotenuto A, Velotti N, Sparnelli F, Cianflone A, Moccia M, Brescia Morra V (2018) Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler 24:1706–1714

    Article  Google Scholar 

  16. Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  Google Scholar 

  17. Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725

    Article  Google Scholar 

  18. Huang D, Jia Y, Gao SS, Lumbroso B, Rispoli M (2016) Optical coherence tomography angiography using the optovue device. Dev Ophthalmol 56:6–12

    Article  Google Scholar 

  19. Core Team R (2018) R: a language and environment for statistical computing. In: R Foundation for statistical computing. Austria. URL, Vienna https://www.R-project.org/

    Google Scholar 

  20. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  21. Paulus W, Schwarz G, Werner A, Lange H, Bayer A, Hofschuster M, Müller N, Zrenner E (1993) Impairment of retinal increment thresholds in Huntington's disease. Ann Neurol 34(4):574–578

    Article  CAS  Google Scholar 

  22. Li M, Yasumura D, Ma AA, Matthes MT, Yang H, Nielson G et al (2013) Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of Huntington disease. PLoS One 8:e56026

    Article  CAS  Google Scholar 

  23. Batcha AH, Greferath U, Jobling AI, Vessey KA, Ward MM, Nithianantharajah J, Hannan AJ, Kalloniatis M, Fletcher EL (2012) Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington’s disease. Neurobiol Dis 45:887–896

    Article  CAS  Google Scholar 

  24. Helmlinger D, Yvert G, Picaud S, Merienne K, Sahel J, Mandel J-L, Devys D (2002) Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Genet 11:3351–3359

    Article  CAS  Google Scholar 

  25. Johnson MA, Gelderblom H, Rüther K, Priller J, Bernstein SL (2014) Evidence that Huntington’s disease affects retinal structure and function. Invest Ophthalmol Vis Sci 55:1644

    Google Scholar 

  26. Gatto E, Parisi V, Persi G, Rey EF, Cesarini M, Etcheverry JS et al (2018) Optical coherence tomography (OCT) study in Argentinean Huntington’s disease patients. Int J Neurosci 128:1157–1162

    Article  Google Scholar 

  27. Sevim DG, Unlu M, Gultekin M, Karaca C (2018) Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington's disease as a potential biomarker. Int Ophthalmol 39:611–621

    Article  Google Scholar 

  28. Mironov V, Hritz MA, LaManna JC, Hudetz AG, Harik SI (1994) Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Res 660:73–80

    Article  CAS  Google Scholar 

  29. Sekhon LH, Morgan MK, SpenceI (197) Normal perfusion pressure breakthrough: the role of capillaries. J. Neurosurg. 86: 519–524

  30. Wolf RC, Gron G, Sambataro F, Vasic N, Wolf ND, Thomann PA et al (2011) Magnetic resonance perfusion imaging of resting-state cerebral blood flow in preclinical Huntington's disease. J Cereb Blood Flow Metab 31:1908–1918

    Article  Google Scholar 

  31. Harris GJ, Codori AM, Lewis RF, Schmidt E, Bedi A, Brandt J (1999) Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease. Brain 122:1667–1678

    Article  Google Scholar 

  32. Duran-Vilaregut J, del Valle J, Manich G, Camins A, Pallas M, Vilaplana J, Pelegri C (2011) Role of matrix metalloproteinase-9 (MMP-9) in striatal blood–brain barrier disruption in a 3-nitropropionic acid model of Huntington's disease. Neuropathol Appl Neurobiol 37:525–537

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Giuseppe De Michele, Gilda Cennamo

Methodology: Gilda Cennamo, Daniela Montorio, Laura Giovanna Di Maio

Formal analysis and investigation: Laura Giovanna Di Maio, Daniela Montorio, Pasquale Dolce, Elena Salvatore

Writing—original draft preparation: Daniela Montorio, Silvio Peluso

Writing—review and editing: Daniela Montorio

Supervision: Giuseppe De Michele, Gilda Cennamo.

Corresponding author

Correspondence to Daniela Montorio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study002E.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Maio, L.G., Montorio, D., Peluso, S. et al. Optical coherence tomography angiography findings in Huntington’s disease. Neurol Sci 42, 995–1001 (2021). https://doi.org/10.1007/s10072-020-04611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04611-2

Keywords

Navigation