Skip to main content

Advertisement

Log in

Correlations among multifocal electroretinography and optical coherence tomography findings in patients with Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

To assess the correlation between functional and anatomical evaluations with multifocal electroretinography (mfERG) and spectral-domain optical coherence tomography (SD-OCT) in patients with Parkinson’s disease (PD). This cross-sectional study involved 116 eyes of 58 patients with PD and 30 age- and sex-matched control subjects. All study participants underwent a comprehensive neuro-ophthalmic examination, retinal single-layer thicknesses and volumes, and peripapillary retinal nerve fiber layer (pRNFL) measurements with SD-OCT, and the patients’ mfERG recordings were evaluated. The macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), outer nuclear layer (ONL), retinal pigment epithelium (RPE), and photoreceptor layer (PR) thicknesses, and mRNFL, RPE, and PR volumes were found lower in PD compared to those of controls, while outer plexiform layer (OPL) volumes were increased (p < 0.05). We found delayed implicit times and decreased amplitudes in the mfERG of PD patients versus those in control subjects (p < 0.05). We found significant correlations between outer macular volumes, PR thicknesses, and N1 amplitudes of rings 2 and 3and P1 amplitudes of rings 3, 4, and 5. Our study revealed thinning of both inner and outer retinal single layers, increased OPL volume, and delayed implicit times and decreased amplitudes in the mfERG of PD patients versus control subjects and correlation between structural and functional parameters. Our findings point out that SD-OCT and mfERG could both serve as non-invasive tools for evaluating ophthalmic manifestations of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park A, Stacy M (2009) Non-motor symptoms in Parkinson’s disease. J Neurol 256(Suppl 3):293–298. https://doi.org/10.1007/s00415-009-5240-1

    Article  PubMed  Google Scholar 

  2. Bodis-Wollner I (2009) Retinopathy in Parkinson disease. J Neural Transm (Vienna) 116(11):1493–1501. https://doi.org/10.1007/s00702-009-0292-z

    Article  Google Scholar 

  3. Price MJ, Feldman RG, Adelberg D, Kayne H (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42(4):887–890. https://doi.org/10.1212/WNL.42.4.887

    Article  CAS  PubMed  Google Scholar 

  4. Demirci S, Gunes A, Koyuncuoglu HR, Tok L, Tok O (2016) Evaluation of corneal parameters in patients with Parkinson’s disease. Neurol Sci 37(8):1247–1252. https://doi.org/10.1007/s10072-016-2574-1

    Article  PubMed  Google Scholar 

  5. Seigo MA, Sotirchos ES, Newsome S, Babiarz A, Eckstein C, Ford ET, Oakley JD, Syc SB, Frohman TC, Ratchford JN, Balcer LJ, Frohman EM, Calabresi PA, Saidha S (2012) In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J Neurol 259(10):2119–2130. https://doi.org/10.1007/s00415-012-6466-x

    Article  PubMed  Google Scholar 

  6. Garcia-Martin E, Rodriguez-Mena D, Satue M, Almarcegui C, Dolz I, Alarcia R, Seral M, Polo V, Larrosa JM, Pablo LE (2014) Electrophysiology and optical coherence tomography to evaluate Parkinson disease severity. Invest Ophthalmol Vis Sci 55(2):696–705. https://doi.org/10.1167/iovs.13-13062

    Article  PubMed  Google Scholar 

  7. Hood DC et al (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124(1):1–13. https://doi.org/10.1007/s10633-011-9296-8

    Article  PubMed  Google Scholar 

  8. Miri S, Glazman S, Mylin L, Bodis-Wollner I (2016) A combination of retinal morphology and visual electrophysiology testing increases diagnostic yield in Parkinson’s disease. Parkinsonism Relat Disord 22(Suppl 1):S134–S137. https://doi.org/10.1016/j.parkreldis.2015.09.015

    Article  PubMed  Google Scholar 

  9. La Morgia C, Barboni P, Rizzo G, Carbonelli M, Savini G, Scaglione C, Capellari S, Bonazza S, Giannoccaro MP, Calandra-Buonaura G, Liguori R, Cortelli P, Martinelli P, Baruzzi A, Carelli V (2013) Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Eur J Neurol 20(1):198–201. https://doi.org/10.1111/j.1468-1331.2012.03701.x

    Article  PubMed  Google Scholar 

  10. Reichmann H (2010) Clinical criteria for the diagnosis of Parkinson’s disease. Neurodegener Dis 7(5):284–290. https://doi.org/10.1159/000314478

    Article  PubMed  Google Scholar 

  11. Ramaker C, Marinus J, Stiggelbout AM, van Hilten BJ (2002) Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov Disord 17(5):867–876. https://doi.org/10.1002/mds.10248

    Article  PubMed  Google Scholar 

  12. Gonzalez-Lopez JJ et al (2014) Comparative diagnostic accuracy of ganglion cell-inner plexiform and retinal nerve fiber layer thickness measures by Cirrus and Spectralis optical coherence tomography in relapsing-remitting multiple sclerosis. Biomed Res Int 2014:128517

    Article  PubMed  PubMed Central  Google Scholar 

  13. Garcia-Martin E, Larrosa JM, Polo V, Satue M, Marques ML, Alarcia R, Seral M, Fuertes I, Otin S, Pablo LE (2014) Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration. Am J Ophthalmol 157(2):470–478 e2. https://doi.org/10.1016/j.ajo.2013.09.028

    Article  PubMed  Google Scholar 

  14. Altintas O et al (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 116(2):137–146. https://doi.org/10.1007/s10633-007-9091-8

    Article  PubMed  Google Scholar 

  15. Hajee ME, March WF, Lazzaro DR, Wolintz AH, Shrier EM, Glazman S, Bodis-Wollner IG (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127(6):737–741. https://doi.org/10.1001/archophthalmol.2009.106

    Article  PubMed  Google Scholar 

  16. Rohani M, Langroodi AS, Ghourchian S, Falavarjani KG, SoUdi R, Shahidi G (2013) Retinal nerve changes in patients with tremor dominant and akinetic rigid Parkinson’s disease. Neurol Sci 34(5):689–693. https://doi.org/10.1007/s10072-012-1125-7

    Article  PubMed  Google Scholar 

  17. Albrecht P, Müller AK, Südmeyer M, Ferrea S, Ringelstein M, Cohn E, Aktas O, Dietlein T, Lappas A, Foerster A, Hartung HP, Schnitzler A, Methner A (2012) Optical coherence tomography in parkinsonian syndromes. PLoS One 7(4):e34891. https://doi.org/10.1371/journal.pone.0034891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord 17(6):431–436. https://doi.org/10.1016/j.parkreldis.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  19. Tsironi EE, Dastiridou A, Katsanos A, Dardiotis E, Veliki S, Patramani G, Zacharaki F, Ralli S, Hadjigeorgiou GM (2012) Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmol 12(1):54. https://doi.org/10.1186/1471-2415-12-54

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schneider M, Müller HP, Lauda F, Tumani H, Ludolph AC, Kassubek J, Pinkhardt EH (2014) Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm (Vienna) 121(1):41–47. https://doi.org/10.1007/s00702-013-1072-3

    Article  Google Scholar 

  21. Lee JY, Kim JM, Ahn J, Kim HJ, Jeon BS, Kim TW (2014) Retinal nerve fiber layer thickness and visual hallucinations in Parkinson’s disease. Mov Disord 29(1):61–67. https://doi.org/10.1002/mds.25543

    Article  PubMed  Google Scholar 

  22. Satue M, Seral M, Otin S, Alarcia R, Herrero R, Bambo MP, Fuertes MI, Pablo LE, Garcia-Martin E (2014) Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol 98(3):350–355. https://doi.org/10.1136/bjophthalmol-2013-304152

    Article  CAS  PubMed  Google Scholar 

  23. Roth NM, Saidha S, Zimmermann H, Brandt AU, Isensee J, Benkhellouf-Rutkowska A, Dornauer M, Kühn AA, Müller T, Calabresi PA, Paul F (2014) Photoreceptor layer thinning in idiopathic Parkinson’s disease. Mov Disord 29(9):1163–1170. https://doi.org/10.1002/mds.25896

    Article  PubMed  Google Scholar 

  24. Brandt AU, Paul F, Saidha S (2014) Reply to: photoreceptor layer thinning in Parkinsonian syndromes. Mov Disord 29(9):1223–1224. https://doi.org/10.1002/mds.25936

    Article  PubMed  Google Scholar 

  25. Muller AK et al (2014) Photoreceptor layer thinning in parkinsonian syndromes. Mov Disord 29(9):1222–1223. https://doi.org/10.1002/mds.25939

    Article  PubMed  Google Scholar 

  26. Chorostecki J, Seraji-Bozorgzad N, Shah A, Bao F, Bao G, George E, Gorden V, Caon C, Frohman E, Tariq Bhatti M, Khan O (2015) Characterization of retinal architecture in Parkinson’s disease. J Neurol Sci 355(1–2):44–48. https://doi.org/10.1016/j.jns.2015.05.007

    Article  PubMed  Google Scholar 

  27. Spund B, Ding Y, Liu T, Selesnick I, Glazman S, Shrier EM, Bodis-Wollner I (2013) Remodeling of the fovea in Parkinson disease. J Neural Transm (Vienna) 120(5):745–753. https://doi.org/10.1007/s00702-012-0909-5

    Article  CAS  Google Scholar 

  28. Bodis-Wollner I (2013) Foveal vision is impaired in Parkinson’s disease. Parkinsonism Relat Disord 19(1):1–14. https://doi.org/10.1016/j.parkreldis.2012.07.012

    Article  PubMed  Google Scholar 

  29. Moschos MM, Tagaris G, Markopoulos I, Margetis I, Tsapakis S, Kanakis M, Koutsandrea C (2011) Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 21(1):24–29. https://doi.org/10.5301/EJO.2010.1318

    Article  PubMed  Google Scholar 

  30. Palmowski-Wolfe AM, Perez MT, Behnke S, Fuss G, Martziniak M, Ruprecht KW (2006) Influence of dopamine deficiency in early Parkinson’s disease on the slow stimulation multifocal-ERG. Doc Ophthalmol 112(3):209–215. https://doi.org/10.1007/s10633-006-0008-8

    Article  PubMed  Google Scholar 

  31. Saidha S, Syc SB, Ibrahim MA, Eckstein C, Warner CV, Farrell SK, Oakley JD, Durbin MK, Meyer SA, Balcer LJ, Frohman EM, Rosenzweig JM, Newsome SD, Ratchford JN, Nguyen QD, Calabresi PA (2011) Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 134(Pt 2):518–533. https://doi.org/10.1093/brain/awq346

    Article  PubMed  Google Scholar 

  32. Papakostopoulos D, Fotiou F, Dean Hart JC, Banerji NK (1989) The electroretinogram in multiple sclerosis and demyelinating optic neuritis. Electroencephalogr Clin Neurophysiol 74(1):1–10. https://doi.org/10.1016/0168-5597(89)90045-2

    Article  CAS  PubMed  Google Scholar 

  33. Zucco G, Zeni MT, Perrone A, Piccolo I (2001) Olfactory sensitivity in early-stage Parkinson patients affected by more marked unilateral disorder. Percept Mot Skills 92(3 Pt 1):894–898. https://doi.org/10.2466/pms.2001.92.3.894

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Unlu.

Ethics declarations

All the patients enrolled provided informed written consent, and this study was reviewed and approved by the EU institutional review board.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unlu, M., Gulmez Sevim, D., Gultekin, M. et al. Correlations among multifocal electroretinography and optical coherence tomography findings in patients with Parkinson’s disease. Neurol Sci 39, 533–541 (2018). https://doi.org/10.1007/s10072-018-3244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3244-2

Keywords

Navigation