Skip to main content

Advertisement

Log in

Influence of four polymorphisms in ABCA1 and PTGS2 genes on risk of Alzheimer’s disease: a meta-analysis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

We preformed this meta-analysis to investigate the influence of ABCA1 (ATP-binding cassette sub-family A member 1) rs2422493 (C-477T), rs1800977 (C-14T), rs2066718 (V771M), and PTGS2 (Prostaglandin-endoperoxide synthase 2) rs20417 (G-765C) polymorphisms on the risk of Alzheimer’s disease (AD). Seventeen eligible case–control studies were acquired from PubMed, Embase, Alzgene, Chinese National Knowledge Infrastructure and Wanfang databases. The pooled odds ratios (ORs) with 95 % confidence intervals (95 % CI) were calculated to evaluate the association under five genetic models. Combined data indicated that ABCA1 rs2422493 polymorphism was statistically significant associated with increasing AD risk in three genetic models (allelic T vs C: OR = 1.12, 95 % CI: 1.01–1.24; homozygous TT vs CC: OR = 1.26, 95 % CI: 1.03–1.55; and recessive TT vs TC + CC: OR = 1.33, 95 % CI: 1.12–1.58) while no association was found between two other ABCA1 polymorphisms and AD susceptibility. Nevertheless, a further risk-stratification analysis showed that ApoE-ε4 carriers with any ABCA1 polymorphism suffered a much higher probability to be AD patients. Meanwhile, PTGS2 rs20417 polymorphism was linked to decreasing AD risk with a P < 0.0001 in five genetic models (e.g., allelic C vs G: OR = 0.59, 95 % CI: 0.50–0.70; homozygous CC vs GG: OR = 0.31, 95 % CI: 0.18–0.52; and heterozygous CG vs GG: OR = 0.64, 95 % CI: 0.52–0.78). In summary, our meta-analysis results showed that ABCA1 rs2422493 polymorphism was a risk factor for AD while PTGS2 rs20417 variant showed a protective effect on AD risk. In addition, ABCA1 rs2066718 and rs1800977 polymorphisms might not contribute to AD susceptibility in general population, but they should play a role on AD development when interacted with ApoE-ε4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377(9770):1019–1031. doi:10.1016/S0140-6736(10)61349-9

    Article  PubMed  Google Scholar 

  2. Weiner MW (2013) Dementia in 2012: further insights into Alzheimer disease pathogenesis. Nat Rev Neurol 9(2):65–66. doi:10.1038/nrneurol.2012.275

    Article  PubMed  Google Scholar 

  3. Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, Middleton L, Russ TC, Deary IJ, Campbell H, Wang W, Rudan I, Global Health Epidemiology Reference G (2013) Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet 381(9882):2016–2023. doi:10.1016/S0140-6736(13)60221-4

    Article  PubMed  Google Scholar 

  4. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–738. doi:10.1038/nrn3114

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9(1):25–34. doi:10.1038/nrneurol.2012.236

    Article  CAS  PubMed  Google Scholar 

  6. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222. doi:10.1016/j.cell.2012.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bettens K, Sleegers K, Van Broeckhoven C (2013) Genetic insights in Alzheimer’s disease. Lancet Neurol 12(1):92–104. doi:10.1016/S1474-4422(12)70259-4

    Article  CAS  PubMed  Google Scholar 

  8. Aleshkov S, Abraham CR, Zannis VI (1997) Interaction of nascent apoE2, apoE3, and apoE4 isoforms expressed in mammalian cells with amyloid peptide β (1–40). Relevance to Alzheimer’s disease. Biochemistry 36(34):10571–10580

    Article  CAS  PubMed  Google Scholar 

  9. Sanan D, Weisgraber K, Russell S, Mahley R, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses A (1994) Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 94(2):860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han XL, Fryer JD, Kowalewski T, Holtzman DM (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279(39):40987–40993. doi:10.1074/jbc.M407963200

    Article  CAS  PubMed  Google Scholar 

  11. Abdullah L, Ait-Ghezala G, Crawford F, Crowell TA, Barker WW, Duara R, Mullan M (2006) The cyclooxygenase 2-765 C promoter allele is a protective factor for Alzheimer’s disease. Neurosci Lett 395(3):240–243. doi:10.1016/j.neulet.2005.10.090

    Article  CAS  PubMed  Google Scholar 

  12. He J, Zhang Q, Ren Z, Li Y, Li X, Zhou W, Zhang H, Meng W, Yan J, He W (2011) Cyclooxygenase-2-765G/C polymorphisms and susceptibility to hepatitis B-related liver cancer in Han Chinese population. Mol Biol Rep 39(4):4163–4168

    Article  PubMed  Google Scholar 

  13. Michele S, Salluzzo MG, Calogero AE, Raffaele F, Bosco P (2014) Association study of COX-2 (PTGS2) -765 G/C promoter polymorphism by pyrosequencing in Sicilian patients with Alzheimer’s disease. Arch Med Sci AMS 10(6):1235–1238. doi:10.5114/aoms.2014.47832

    Article  CAS  PubMed  Google Scholar 

  14. Oram JF, Lawn RM (2001) ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 42(8):1173–1179

    CAS  PubMed  Google Scholar 

  15. Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H, Perry RT, Collins JS, Harrell LE, Go RC, Mahoney A, Beaty T, Fallin MD, Avramopoulos D, Chase GA, Folstein MF, McInnis MG, Bassett SS, Doheny KJ, Pugh EW, Tanzi RE, Group NGIAsDS (2003) Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum Mol Genet 12(1):23–32

    Article  CAS  PubMed  Google Scholar 

  16. Karten B, Peake KB, Vance JE (2009) Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids 1791(7):659–670

    Article  CAS  Google Scholar 

  17. Jiang M, Lv L, Wang H, Yang X, Ji H, Zhou F, Zhu W, Cai L, Gu X, Sun J, Dong Q (2012) Meta-analysis on association between the ATP-binding cassette transporter A1 gene (ABCA1) and Alzheimer’s disease. Gene 510(2):147–153. doi:10.1016/j.gene.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  18. Yancey PG, Bortnick AE, Kellner-Weibel G, de la Llera-Moya M, Phillips MC, Rothblat GH (2003) Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 23(5):712–719. doi:10.1161/01.ATV.0000057572.97137.DD

    Article  CAS  PubMed  Google Scholar 

  19. Wollmer MA, Streffer JR, Lutjohann D, Tsolaki M, Iakovidou V, Hegi T, Pasch T, Jung HH, Bergmann K, Nitsch RM, Hock C, Papassotiropoulos A (2003) ABCA1 modulates CSF cholesterol levels and influences the age at onset of Alzheimer’s disease. Neurobiol Aging 24(3):421–426

    Article  CAS  PubMed  Google Scholar 

  20. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J Off Publ Fed Am Soc Exp Biol 12(12):1063–1073

    CAS  Google Scholar 

  21. Qin Y, Tian YP (2011) Protective effects of total glucosides of paeony and the underlying mechanisms in carbon tetrachloride-induced experimental liver injury. Arch Med Sci AMS 7(4):604–612. doi:10.5114/aoms.2011.24129

    Article  CAS  PubMed  Google Scholar 

  22. Masferrer JL, Zweifel BS, Colburn SM, Ornberg RL, Salvemini D, Isakson P, Seibert K (1995) The role of cyclooxygenase-2 in inflammation. Am J Ther 2(9):607–610

    Article  PubMed  Google Scholar 

  23. Listi F, Caruso C, Lio D, Colonna-Romano G, Chiappelli M, Licastro F, Candore G (2010) Role of cyclooxygenase-2 and 5-lipoxygenase polymorphisms in Alzheimer’s disease in a population from northern Italy: implication for pharmacogenomics. J Alzheimer’s Dis JAD 19(2):551–557. doi:10.3233/JAD-2010-1260

    CAS  PubMed  Google Scholar 

  24. Hoozemans JJ, Rozemuller JM, van Haastert ES, Veerhuis R, Eikelenboom P (2008) Cyclooxygenase-1 and -2 in the different stages of Alzheimer’s disease pathology. Curr Pharm Des 14(14):1419–1427

    Article  CAS  PubMed  Google Scholar 

  25. Ho L, Pieroni C, Winger D, Purohit DP, Aisen PS, Pasinetti GM (1999) Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer’s disease. J Neurosci Res 57(3):295–303

    Article  CAS  PubMed  Google Scholar 

  26. Oka A, Takashima S (1997) Induction of cyclo-oxygenase 2 in brains of patients with Down’s syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons. NeuroReport 8(5):1161–1164

    Article  CAS  PubMed  Google Scholar 

  27. Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci Off J Soc Neurosci 17(8):2746–2755

    CAS  Google Scholar 

  28. Hoozemans JJ, Rozemuller AJ, Janssen I, De Groot CJ, Veerhuis R, Eikelenboom P (2001) Cyclooxygenase expression in microglia and neurons in Alzheimer’s disease and control brain. Acta Neuropathol 101(1):2–8

    CAS  PubMed  Google Scholar 

  29. David M, Alessandro L, Jennifer T, Altman DG (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med 6(3):e1000097

    Google Scholar 

  30. Tang W, He M, Yang B, Wei K, Yin M, Zhang L (2013) Association study of polymorphisms in the cyclooxygenase-2 gene and Alzheimer’s disease risk in Chinese. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 34(5):695–699. doi:10.1007/s10072-012-1115-9

    Google Scholar 

  31. Katzov H, Chalmers K, Palmgren J, Andreasen N, Johansson B, Cairns NJ, Gatz M, Wilcock GK, Love S, Pedersen NL, Brookes AJ, Blennow K, Kehoe PG, Prince JA (2004) Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism. Hum Mutat 23(4):358–367. doi:10.1002/humu.20012

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Tacey K, Doil L, van Luchene R, Garcia V, Rowland C, Schrodi S, Leong D, Lau K, Catanese J, Sninsky J, Nowotny P, Holmans P, Hardy J, Powell J, Lovestone S, Thal L, Owen M, Williams J, Goate A, Grupe A (2004) Association of ABCA1 with late-onset Alzheimer’s disease is not observed in a case-control study. Neurosci Lett 366(3):268–271. doi:10.1016/j.neulet.2004.05.047

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez-Rodriguez E, Mateo I, Llorca J, Sanchez-Quintana C, Infante J, Garcia-Gorostiaga I, Sanchez-Juan P, Berciano J, Combarros O (2007) Association of genetic variants of ABCA1 with Alzheimer’s disease risk. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 144B(7):964–968. doi:10.1002/ajmg.b.30552

    Article  CAS  Google Scholar 

  34. Rodriguez-Rodriguez E, Mateo I, Infante J, Llorca J, Garcia-Gorostiaga I, Vazquez-Higuera JL, Sanchez-Juan P, Berciano J, Combarros O (2009) Interaction between HMGCR and ABCA1 cholesterol-related genes modulates Alzheimer’s disease risk. Brain Res 1280:166–171. doi:10.1016/j.brainres.2009.05.019

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez-Rodriguez E, Vazquez-Higuera JL, Sanchez-Juan P, Mateo I, Pozueta A, Martinez-Garcia A, Frank A, Valdivieso F, Berciano J, Bullido MJ, Combarros O (2010) Epistasis between intracellular cholesterol trafficking-related genes (NPC1 and ABCA1) and Alzheimer’s disease risk. J Alzheimer’s Dis JAD 21(2):619–625. doi:10.3233/JAD-2010-100432

    CAS  PubMed  Google Scholar 

  36. Feher A, Juhasz A, Rimanoczy A, Kalman J, Janka Z (2010) Association study of interferon-gamma, cytosolic phospholipase A2, and cyclooxygenase-2 gene polymorphisms in Alzheimer disease. Am J Geriatr Psychiatry 18(11):983–987. doi:10.1097/JGP.0b013e3181e70c05

    Article  PubMed  Google Scholar 

  37. Cascorbi I, Flüh C, Remmler C, Haenisch S, Faltraco F, Grumbt M, Peters M, Brenn A, Thal DR, Warzok RW, Vogelgesang S (2013) Association of ATP-binding cassette transporter variants with the risk of Alzheimer’s disease. Pharmacogenomics 14(5):485–494

    Article  CAS  PubMed  Google Scholar 

  38. Toral-Rios D, Franco-Bocanegra D, Rosas-Carrasco O, Mena-Barranco F, Carvajal-Garcla R, Meraz-Rlos MA, Campos-Peña V (2015) Evaluation of inflammation-related genes polymorphisms in mexican with Alzheimer’s disease: a pilot study. Front Cell Neurosci 9(MAY):1–10

    Google Scholar 

  39. Kyriakou T, Hodgkinson C, Pontefract DE, Iyengar S, Howell WM, Wong YK, Eriksson P, Ye S (2005) Genotypic effect of the -565C > T polymorphism in the ABCA1 gene promoter on ABCA1 expression and severity of atherosclerosis. Arterioscler Thromb Vasc Biol 25(2):418–423. doi:10.1161/01.ATV.0000149379.72018.20

    Article  CAS  PubMed  Google Scholar 

  40. Jian Z, Suning C, Lan J, Yonghe Y, Depei W, Yifeng Z (2011) Functional genetic variations of cyclooxygenase-2 and susceptibility to acute myeloid leukemia in a Chinese population. Eur J Haematol 87(6):486–493

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31170676), and by the funds from Sail Plan ‘the Introduction of the Shortage of Top-Notch Talent’ Project [YueRenCaiBan (2014) 1] as well as Education Discipline Construction Project (2013KJCX0090) of Guangdong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Zunnan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Q. Chen and B. Liang are equal contributors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Liang, B., Wang, Z. et al. Influence of four polymorphisms in ABCA1 and PTGS2 genes on risk of Alzheimer’s disease: a meta-analysis. Neurol Sci 37, 1209–1220 (2016). https://doi.org/10.1007/s10072-016-2579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2579-9

Keywords

Navigation