Skip to main content
Log in

Low-dose nicotine facilitates spatial memory in ApoE-knockout mice in the radial arm maze

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Here, we investigated the effects of nicotine on spatial memory in ApoE-knockout (ApoE-KO) and wild-type (WT) mice in a radial arm maze. Training occurred on three consecutive days and the test was performed on day 4, with one trial per day. Then on day 4, animals were administered nicotine (0.1, 0.25, 0.5, and 1.0 mg/kg) or the antagonist of nicotinic receptors (nAChRs) mecamylamine (MEC 2 mg/kg) alone or together with 0.1 mg/kg nicotine. The number of errors in the first eight choices was recorded. The results were that 0.1 mg/kg nicotine decreased errors in ApoE-KO mice, while 0.1 and 0.25 mg/kg nicotine reduced errors in WT mice, indicating that lower doses of nicotine elicit a memory improvement. In contrast, 1.0 mg/kg nicotine increased errors in WT mice, but not in ApoE-KO mice. MEC alone had no noticeable effect on errors in either strain of mice. However, co-administration of 0.1 mg/kg nicotine and MEC increased errors and reduced the effects of nicotine in WT mice, but not in ApoE-KO mice. Our study found a biphasic effect of nicotine in WT mice: it improves spatial memory at lower doses and impairs it at a higher dose. In ApoE-KO mice, nicotine improves memory at a low dose and has no effect at a higher dose, suggesting that the ApoE deficiency may influence the efficacy of nicotine. Moreover, a reversal of nicotinic effects with MEC was seen in WT mice, indicating the likelihood of the involvement of nAChRs in the spatial-memory response to nicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim JS, Levin ED (1996) Nicotinic, muscarinic and dopaminergic actions in the ventral hippocampus and the nucleus accumbens: effects on spatial working memory in rats. Brain Res 725:231–240

    PubMed  CAS  Google Scholar 

  2. Raybuck JD, Gould TJ (2010) The role of nicotinic acetylcholine receptors in the medial prefrontal cortex and hippocampus in trace fear conditioning. Neurobiol Learn Mem 94:353–363

    Article  PubMed  CAS  Google Scholar 

  3. Wada E, Wada K, Boulter J (1989) Distribution of α2, α3, α4, and β2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284:314–355

    Article  PubMed  CAS  Google Scholar 

  4. Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37:475–524

    Article  PubMed  CAS  Google Scholar 

  5. Clarke PB, Kumar R (1983) The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br J Pharmacol 78:329–337

    Article  PubMed  CAS  Google Scholar 

  6. Stolerman IP, Mirza NR, Hahn B, Shoaib M (2000) Nicotine in an animal model of attention. Eur J Pharmacol 393:147–154

    Article  PubMed  CAS  Google Scholar 

  7. Zarrindast MR, Sadegh M, Shafaghi B (1996) Effects of nicotine on memory retrieval in mice. Eur J Pharmacol 295:1–6

    Article  PubMed  CAS  Google Scholar 

  8. Aceto MD, Awaya H, Martin BR, May EL (1983) Antinociceptive action of nicotine and its methiodide derivatives in mice and rats. Br J Pharmacol 79:869–876

    Article  PubMed  CAS  Google Scholar 

  9. Balfour DJ (1982) The effects of nicotine on brain neurotransmitter systems. Pharmacol Ther 16:269–282

    Article  PubMed  CAS  Google Scholar 

  10. Uzüm G, Díler AS, Bahçekapili N, Tasyüreklí M, Zíylan YZ (2004) Nicotine improves learning and memory in rats: morphological evidence for acetylcholine involvement. Int J Neurosci 114:1163–1179

    Article  PubMed  Google Scholar 

  11. Haroutunian V, Barnes E, Davis KL (1985) Cholinergic modulation of memory in rats. Psychopharmacology (Berl) 87:266–271

    Article  CAS  Google Scholar 

  12. Decker MW, Majchrzak MJ, Anderson DJ (1992) Effects of nicotine on spatial memory deficits in rats with septal lesions. Brain Res 572:281–285

    Article  PubMed  CAS  Google Scholar 

  13. Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 138:217–230

    Article  CAS  Google Scholar 

  14. Katner SN, Davis SA, Kirsten AJ, Taffe MA (2004) Effects of nicotine and mecamylamine on cognition in rhesus monkeys. Psychopharmacology (Berl) 175:225–240

    Article  CAS  Google Scholar 

  15. Meguro K, Yamaguchi S, Arai H, Nakagawa T, Doi C, Yamada M, Ikarashi Y, Maruyama Y, Sasaki H (1994) Nicotine improves cognitive disturbance in senescence-accelerated mice. Pharmacol Biochem Behav 49:769–772

    Article  PubMed  CAS  Google Scholar 

  16. Weiss S, Nosten-Bertrand M, McIntosh JM, Giros B, Martres MP (2007) Nicotine improves cognitive deficits of dopamine transporter knockout mice without long-term tolerance. Neuropsychopharmacology 32:2465–2478

    Article  PubMed  CAS  Google Scholar 

  17. Gilliam DM, Schlesinger K (1985) Nicotine-produced relearning deficit in C57BL/6J and DBA/2J mice. Psychopharmacology (Berl) 86:291–295

    Article  CAS  Google Scholar 

  18. Moragrega I, Carrasco MC, Vicens P, Redolat R (2003) Spatial learning in male mice with different levels of aggressiveness: effects of housing conditions and nicotine administration. Behav Brain Res 147:1–8

    Article  PubMed  CAS  Google Scholar 

  19. Shim SB, Lee SH, Chae KR, Kim CK, Hwang DY, Kim BG, Jee SW, Lee SH, Sin JS, Bae CJ, Lee BC, Lee HH, Kim YK (2008) Nicotine leads to improvements in behavioral impairment and an increase in the nicotine acetylcholine receptor in transgenic mice. Neurochem Res 33:1783–1788

    Article  PubMed  CAS  Google Scholar 

  20. Plassman BL, Welsh-Bohmer KA, Bigler ED, Johnson SC, Anderson CV, Helms MJ, Saunders AM, Breitner JC (1997) Apolipoprotein E epsilon 4 allele and hippocampal volume in twins with normal cognition. Neurology 48:985–989

    Article  PubMed  CAS  Google Scholar 

  21. Greenwood PM, Sunderland T, Friz J, Parasuraman R (2000) Genetics and visual attention: selective deficits in healthy adult carriers of the ε4 allele of the apolipoprotein E gene. Proc Natl Acad Sci USA 97:11661–11666

    Article  PubMed  CAS  Google Scholar 

  22. Hartman RE, Wozniak DF, Nardi A, Olney JW, Sartorius L, Holtzman DM (2001) Behavioral phenotyping of GFAP-apoE3 and -apoE4 transgenic mice: apoE4 mice show profound working memory impairments in the absence of Alzheimer’s-like neuropathology. Exp Neurol 170:326–344

    Article  PubMed  CAS  Google Scholar 

  23. Marchant NL, King SL, Tabet N, Rusted JM (2010) Positive effects of cholinergic stimulation favor young APOE epsilon4 carriers. Neuropsychopharmacology 35:1090–1096

    Article  PubMed  CAS  Google Scholar 

  24. Krzywkowski P, Ghribi O, Gagné J, Chabot C, Kar S, Rochford J, Massicotte G, Poirier J (1999) Cholinergic systems and long-term potentiation in memory-impaired apolipoprotein E-deficient mice. Neuroscience 92:1273–1286

    Article  PubMed  CAS  Google Scholar 

  25. Valastro B, Ghribi O, Poirier J, Krzywkowski P, Massicotte G (2001) AMPA receptor regulation and LTP in the hippocampus of young and aged apolipoprotein E-deficient mice. Neurobiol Aging 22:9–15

    Article  PubMed  CAS  Google Scholar 

  26. Krugers HJ, Mulder M, Korf J, Havekes L, de Kloet ER, Joëls M (1997) Altered synaptic plasticity in hippocampal CA1 area of apolipoprotein E deficient mice. Neuroreport 8:2505–2510

    Article  PubMed  CAS  Google Scholar 

  27. Gordon I, Grauer E, Genis I, Sehayek E, Michaelson DM (1995) Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci Lett 199:1–4

    Article  PubMed  CAS  Google Scholar 

  28. Masliah E, Mallory M, Ge N, Alford M, Veinbergs I, Roses AD (1995) Neurodegeneration in the central nervous system of apoE-deficient mice. Exp Neurol 136:107–122

    Article  PubMed  CAS  Google Scholar 

  29. Komatsu H, Nogaya J, Kuratani N, Ueki M, Yokono S, Ogli K (1998) Repetitive post-training exposure to enflurane modifies spatial memory in mice. Anesthesiology 89:1184–1190

    Article  PubMed  CAS  Google Scholar 

  30. Lockman PR, McAfee G, Geldenhuys WJ, Van der Schyf CJ, Abbruscato TJ, Allen DD (2005) Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure. J Pharmacol Exp Ther 314:636–642

    Article  PubMed  CAS  Google Scholar 

  31. Sasaki H, Yanai M, Meguro K, Sekizawa K, Ikarashi Y, Maruyama Y, Yamamoto M, Matsuzaki Y, Takishima T (1991) Nicotine improves cognitive disturbance in rodents fed with a choline-deficient diet. Pharmacol Biochem Behav 38:921–925

    Article  PubMed  CAS  Google Scholar 

  32. Levin ED, Torry D (1996) Acute and chronic nicotine effects on working memory in aged rats. Psychopharmacology (Berl) 123:88–97

    Article  CAS  Google Scholar 

  33. Broide RS, Salas R, Ji D, Paylor R, Patrick JW, Dani JA, De Biasi M (2002) Increased sensitivity to nicotine-induced seizures in mice expressing the L250T alpha 7 nicotinic acetylcholine receptor mutation. Mol Pharmacol 61:695–705

    Article  PubMed  CAS  Google Scholar 

  34. Levin ED, Chen E (2004) Nicotinic involvement in memory function in zebrafish. Neurotoxicol Teratol 26:731–735

    Article  PubMed  CAS  Google Scholar 

  35. McQuail JA, Burk JA (2006) Evaluation of muscarinic and nicotinic receptor antagonists on attention and working memory. Pharmacol Biochem Behav 85:796–803

    Article  PubMed  CAS  Google Scholar 

  36. Levin ED, Caldwell DP (2006) Low-dose mecamylamine improves learning of rats in the radial-arm maze repeated acquisition procedure. Neurobiol Learn Mem 86:117–122

    Article  PubMed  CAS  Google Scholar 

  37. Yun SH, Park KA, Sullivan P, Pasternak JF, Ladu MJ, Trommer BL (2005) Blockade of nicotinic acetylcholine receptors suppresses hippocampal long-term potentiation in wild-type but not ApoE4 targeted replacement mice. J Neurosci Res 82:771–777

    Article  PubMed  CAS  Google Scholar 

  38. Levin ED, Castonguay M, Ellison GD (1987) Effects of the nicotinic receptor blocker mecamylamine on radial-arm maze performance in rats. Behav Neural Biol 48:206–212

    Article  PubMed  CAS  Google Scholar 

  39. Sansone M, Castellano C, Battaglia M, Ammassari-Teule M (1990) Oxiracetam prevents mecamylamine-induced impairment of active, but not passive, avoidance learning in mice. Pharmacol Biochem Behav 36:389–392

    Article  PubMed  CAS  Google Scholar 

  40. Levin ED, Kaplan S, Boardman A (1997) Acute nicotine interactions with nicotinic and muscarinic antagonists: working and reference memory effects in the 16-arm radial maze. Behav Pharmacol 8:236–242

    PubMed  CAS  Google Scholar 

  41. Zarrindast MR, Homayoun H, Babaie A, Etminani A, Gharib B (2000) Involvement of adrenergic and cholinergic systems in nicotine-induced anxiogenesis in mice. Eur J Pharmacol 407:145–158

    Article  PubMed  CAS  Google Scholar 

  42. Marks MJ, Campbell SM, Romm E, Collins AC (1991) Genotype influences the development of tolerance to nicotine in the mouse. J Pharmacol Exp Ther 259:392–402

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Grant-in-Aid for Scientific Research [Grant No. (c) 22590636, 20590681, 22591203] from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostofa Jamal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sultana, R., Ameno, K., Jamal, M. et al. Low-dose nicotine facilitates spatial memory in ApoE-knockout mice in the radial arm maze. Neurol Sci 34, 891–897 (2013). https://doi.org/10.1007/s10072-012-1149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1149-z

Keywords

Navigation