Skip to main content

Advertisement

Log in

Effects of nicotine and mecamylamine on cognition in rhesus monkeys

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine and other agonists of nicotinic cholinergic receptors (nAChR) have been shown to improve performance in specific memory domains in rodents and monkeys. Such beneficial effects are observed in preclinical models of age-related cognitive decline, stimulating interest in nAChR ligands as possible therapeutics. Prior work has typically focused on assays of spatial working memory in rodent studies and visual recognition memory in monkey studies.

Objective

The current study was conducted to determine the role played by nAChRs in multiple types of memory in monkeys.

Methods

Rhesus monkeys (n=6) were trained to perform a battery of six behavioral tasks and then serially challenged with acute doses of nicotine (3.2–56 μg/kg, IM) and the nAChR antagonist mecamylamine (0.32–1.78 mg/kg, IM).

Results

Nicotine improved performance on tests designed to assay visual recognition memory, spatial working memory and visuo-spatial associative memory, while mecamylamine impaired visuo-spatial associative memory. Ballistic and fine motor performance was not significantly improved by nicotine but fine motor performance was impaired by mecamylamine.

Conclusions

Although nicotine may improve performance in multiple domains, effects on visuo-spatial associative memory is the most specifically attributable to nAChR signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aigner TG, Mishkin M (1986) The effects of physostigmine and scopolamine on recognition memory in monkeys. Behav Neural Biol 45:81–87

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Cai JX (1993) Postsynaptic alpha-2 receptor stimulation improves memory in aged monkeys: indirect effects of yohimbine versus direct effects of clonidine. Neurobiol Aging 14:597–603

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF, Contant TA (1992) Alpha-2 adrenergic agonists decrease distractibility in aged monkeys performing the delayed response task. Psychopharmacology 108:159–169

    CAS  PubMed  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1990) Analysis of alpha-2 adrenergic agonist effects on the delayed nonmatch-to-sample performance of aged rhesus monkeys. Neurobiol Aging 11:583–590

    Article  CAS  PubMed  Google Scholar 

  • Aubert I, Araujo DM, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541

    CAS  PubMed  Google Scholar 

  • Bammer G (1982) Pharmacological investigations of neurotransmitter involvement in passive avoidance responding: a review and some new results. Neurosci Biobehav Rev 6:247–296

    CAS  PubMed  Google Scholar 

  • Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    Article  PubMed  Google Scholar 

  • Bartus RT, Johnson HR (1976) Short-term memory in the rhesus monkey: disruption from the anti-cholinergic scopolamine. Pharmacol Biochem Behav 5:39–46

    PubMed  Google Scholar 

  • Bizarro L, Stolerman IP (2003) Attentional effects of nicotine and amphetamine in rats at different levels of motivation. Psychopharmacology 170:271–277

    Article  CAS  PubMed  Google Scholar 

  • Bontempi B, Whelan KT, Risbrough VB, Rao TS, Buccafusco JJ, Lloyd GK, Menzaghi F (2001) SIB-1553A, (±)-4-[[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride, a subtype-selective ligand for nicotinic acetylcholine receptors with putative cognitive-enhancing properties: effects on working and reference memory performances in aged rodents and nonhuman primates. J Pharmacol Exp Ther 299:297–306

    Google Scholar 

  • Brenner DE, Kukull WA, van Belle G, Bowen JD, McCormick WC, Teri L, Larson EB (1993) Relationship between cigarette smoking and Alzheimer’s disease in a population-based case-control study. Neurology 43:293–300

    CAS  PubMed  Google Scholar 

  • Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE, Decker MW, Donnelly-Roberts D, Elliott RL, Gopalakrishnan M, Holladay MW, Hui YH, Jackson WJ, Kim DJ, Marsh KC, O’Neill A, Prendergast MA, Ryther KB, Sullivan JP, Arneric SP (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57:231–241

    CAS  PubMed  Google Scholar 

  • Broks P, Preston GC, Traub M, Poppleton P, Ward C, Stahl SM (1988) Modelling dementia: effects of scopolamine on memory and attention. Neuropsychologia 26:685–700

    CAS  PubMed  Google Scholar 

  • Buccafusco JJ, Jackson WJ (1991) Beneficial effects of nicotine administered prior to a delayed matching-to-sample task in young and aged monkeys. Neurobiol Aging 12:233–238

    Article  CAS  PubMed  Google Scholar 

  • Buccafusco JJ, Jackson WJ, Terry AV Jr, Marsh KC, Decker MW, Arneric SP (1995) Improvement in performance of a delayed matching-to-sample task by monkeys following ABT-418: a novel cholinergic channel activator for memory enhancement. Psychopharmacology 120:256–266

    CAS  PubMed  Google Scholar 

  • Buccafusco JJ, Jackson WJ, Jonnala RR, Terry AV Jr (1999) Differential improvement in memory-related task performance with nicotine by aged male and female rhesus monkeys. Behav Pharmacol 10:681–690

    CAS  PubMed  Google Scholar 

  • Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF (1997) Special Report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    PubMed  Google Scholar 

  • Court JA, Martin-Ruiz C, Graham A, Perry E (2000a) Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat 20:281–298

    Article  CAS  PubMed  Google Scholar 

  • Court JA, Piggott MA, Lloyd S, Cookson N, Ballard CG, McKeith IG, Perry RH, Perry EK (2000b) Nicotine binding in human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, Parkinson’s disease and Alzheimer’s disease and in relation to neuroleptic medication. Neuroscience 98:79–87

    Article  CAS  PubMed  Google Scholar 

  • Davidson MC, Cutrell EB, Marrocco RT (1999) Scopolamine slows the orienting of attention in primates to cued visual targets. Psychopharmacology 142:1–8

    Google Scholar 

  • Decker MW, Majchrzak MJ (1992) Effects of systemic and intracerebroventricular administration of mecamylamine, a nicotinic cholinergic antagonist, on spatial memory in rats. Psychopharmacology 107:530–534

    CAS  PubMed  Google Scholar 

  • Decker MW, Majchrzak MJ, Anderson DJ (1992) Effects of nicotine on spatial memory deficits in rats with septal lesions. Brain Res 572:281–285

    Article  CAS  PubMed  Google Scholar 

  • Decker MW, Bannon AW, Curzon P, Gunther KL, Brioni JD, Holladay MW, Lin NH, Li Y, Daanen JF, Buccafusco JJ, Prendergast MA, Jackson WJ, Arneric SP (1997) ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine dihydrochloride]: II. A novel cholinergic channel modulator with effects on cognitive performance in rats and monkeys. J Pharmacol Exp Ther 283:247–258

    CAS  PubMed  Google Scholar 

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174:788–794

    CAS  PubMed  Google Scholar 

  • Dilts SL, Berry C (1967) Effect of cholinergic drugs on passive avoidance in the mouse. J Pharmacol Exp Ther 158:279–285

    CAS  PubMed  Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. A relationship to aging? Arch Neurol 30:113–121

    CAS  PubMed  Google Scholar 

  • Ebersbach G, Stock M, Muller J, Wenning G, Wissel J, Poewe W (1999) Worsening of motor performance in patients with Parkinson’s disease following transdermal nicotine administration. Move Disord 14:1011–1013

    Article  CAS  Google Scholar 

  • Elrod K, Buccafusco JJ, Jackson WJ (1988) Nicotine enhances delayed matching-to-sample performance by primates. Life Sci 43:277–287

    Article  CAS  PubMed  Google Scholar 

  • Everett SA, Warren CW, Sharp D, Kann L, Husten CG, Crossett LS (1999) Initiation of cigarette smoking and subsequent smoking behavior among U.S. high school students. Prev Med 29:327–333

    Article  CAS  PubMed  Google Scholar 

  • Flicker C, Serby M, Ferris SH (1990) Scopolamine effects on memory, language, visuospatial praxis and psychomotor speed. Psychopharmacology 100:243–250

    CAS  PubMed  Google Scholar 

  • Fowler KS, Saling MM, Conway EL, Semple JM, Louis WJ (2002) Paired associate performance in the early detection of DAT. J Int Neuropsychol Soc 8:58–71

    Article  PubMed  Google Scholar 

  • Franowicz JS, Arnsten AF (1998) The alpha-2a noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys. Psychopharmacology 136:8–14

    CAS  PubMed  Google Scholar 

  • Ghoneim MM, Mewaldt SP (1975) Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory. Psychopharmacologia 44:257–262

    CAS  PubMed  Google Scholar 

  • Giovino GA (1999) Epidemiology of tobacco use among US adolescents. Nicotine Tobacco Res: S31–40

    Google Scholar 

  • Graves AB, van Duijn CM, Chandra V, Fratiglioni L, Heyman A, Jorm AF, Kokmen E, Kondo K, Mortimer JA, Rocca WA, et al. (1991) Alcohol and tobacco consumption as risk factors for Alzheimer’s disease: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group. Int J Epidemiol 20:S48–57

    PubMed  Google Scholar 

  • Grigoryan G, Hodges H, Mitchell S, Sinden JD, Gray JA (1996) 6-OHDA lesions of the nucleus accumbens accentuate memory deficits in animals with lesions to the forebrain cholinergic projection system: effects of nicotine administration on learning and memory in the water maze. Neurobiol Learn Mem 65:135–153

    Article  CAS  PubMed  Google Scholar 

  • Grottick AJ, Higgins GA (2000) Effect of subtype selective nicotinic compounds on attention as assessed by the five-choice serial reaction time task. Behav Brain Res 117:197–208

    CAS  PubMed  Google Scholar 

  • Hahn B, Sharples CG, Wonnacott S, Shoaib M, Stolerman IP (2003) Attentional effects of nicotinic agonists in rats. Neuropharmacology 44:1054–1067

    Article  CAS  PubMed  Google Scholar 

  • Heishman SJ (1999) Behavioral and cognitive effects of smoking: relationship to nicotine addiction. Nicotine Tobacco Res 1:S143–147; discussion S165–166

    Google Scholar 

  • Hernan MA, Zhang SM, Rueda-deCastro AM, Colditz GA, Speizer FE, Ascherio A (2001) Cigarette smoking and the incidence of Parkinson’s disease in two prospective studies. Ann Neurol 50:780–786

    Article  CAS  PubMed  Google Scholar 

  • Hironaka N, Miyata H, Ando K (1992) Effects of psychoactive drugs on short-term memory in rats and rhesus monkeys. Jpn J Pharmacol 59:113–120

    CAS  PubMed  Google Scholar 

  • Howe MN, Price IR (2001) Effects of transdermal nicotine on learning, memory, verbal fluency, concentration, and general health in a healthy sample at risk for dementia. Int Psychogeriatr 13:465–475

    CAS  PubMed  Google Scholar 

  • Ishikawa A, Miyatake T (1993) Effects of smoking in patients with early-onset Parkinson’s disease. J Neurol Sci 117:28–32

    Article  CAS  PubMed  Google Scholar 

  • Jones DN, Barnes JC, Kirkby DL, Higgins GA (1995) Age-associated impairments in a test of attention: evidence for involvement of cholinergic systems. J Neurosci 15:7282–7292

    CAS  PubMed  Google Scholar 

  • Jones GM, Sahakian BJ, Levy R, Warburton DM, Gray JA (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 108:485–494

    CAS  PubMed  Google Scholar 

  • Keeler TE, Hu TW, Keith A, Manning R, Marciniak MD, Ong M, Sung HY (2002) The benefits of switching smoking cessation drugs to over-the-counter status. Health Econ 11:389–402

    Article  PubMed  Google Scholar 

  • Kellar KJ, Whitehouse PJ, Martino-Barrows AM, Marcus K, Price DL (1987) Muscarinic and nicotinic cholinergic binding sites in Alzheimer’s disease cerebral cortex. Brain Res 436:62–68

    Article  CAS  PubMed  Google Scholar 

  • Kelton MC, Kahn HJ, Conrath CL, Newhouse PA (2000) The effects of nicotine on Parkinson’s disease. Brain Cognit 43:274–282

    CAS  Google Scholar 

  • Kirk RC, White KG, McNaughton N (1988) Low dose scopolamine affects discriminability but not rate of forgetting in delayed conditional discrimination. Psychopharmacology 96:541–546

    CAS  PubMed  Google Scholar 

  • Koss E, Ober BA, Delis DC, Friedland RP (1984) The Stroop color-word test: indicator of dementia severity. Int J Neurosci 24:53–61

    CAS  PubMed  Google Scholar 

  • Lee PN (1994) Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13:131–144

    PubMed  Google Scholar 

  • Levin ED, Christopher NC, Briggs SJ, Rose JE (1993) Chronic nicotine reverses working memory deficits caused by lesions of the fimbria or medial basalocortical projection. Brain Res Cognit Brain Res 1:137–143

    Article  CAS  Google Scholar 

  • Lloyd GK, Williams M (2000) Neuronal nicotinic acetylcholine receptors as novel drug targets. J Pharmacol Exp Ther 292:461–467

    CAS  PubMed  Google Scholar 

  • Min SK, Moon IW, Ko RW, Shin HS (2001) Effects of transdermal nicotine on attention and memory in healthy elderly non-smokers. Psychopharmacology 159:83–88

    Article  CAS  PubMed  Google Scholar 

  • Mirza NR, Stolerman IP (1998) Nicotine enhances sustained attention in the rat under specific task conditions. Psychopharmacology 138:266–274

    CAS  PubMed  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1995) Reversal of visual attentional dysfunction following lesions of the cholinergic basal forebrain by physostigmine and nicotine but not by the 5-HT3 receptor antagonist, ondansetron. Psychopharmacology 118:82–92

    CAS  PubMed  Google Scholar 

  • Mumenthaler MS, Yesavage JA, Taylor JL, O’Hara R, Friedman L, Lee H, Kraemer HC (2003) Psychoactive drugs and pilot performance: a comparison of nicotine, donepezil, and alcohol effects. Neuropsychopharmacology 28:1366–1373

    Article  CAS  PubMed  Google Scholar 

  • Newhouse PA, Potter A, Corwin J, Lenox R (1992) Acute nicotinic blockade produces cognitive impairment in normal humans. Psychopharmacology 108:480–484

    CAS  PubMed  Google Scholar 

  • Newhouse PA, Potter A, Levin ED (1997) Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases. Implications for therapeutics. Drugs Aging 11:206–228

    CAS  PubMed  Google Scholar 

  • Nordberg A, Winblad B (1986) Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72:115–119

    Article  CAS  PubMed  Google Scholar 

  • Nordberg A, Adem A, Hardy J, Winblad B (1988) Change in nicotinic receptor subtypes in temporal cortex of Alzheimer brains. Neurosci Lett 86:317–321

    Article  CAS  PubMed  Google Scholar 

  • Osman A, Lou L, Muller-Gethmann H, Rinkenauer G, Mattes S, Ulrich R (2000) Mechanisms of speed-accuracy tradeoff: evidence from covert motor processes. Biol Psychol 51:173–199

    Article  CAS  PubMed  Google Scholar 

  • Perry E, Court J, Goodchild R, Griffiths M, Jaros E, Johnson M, Lloyd S, Piggott M, Spurden D, Ballard C, McKeith I, Perry R (1998) Clinical neurochemistry: developments in dementia research based on brain bank material. J Neural Transm 105:915–933

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, McAlonan K, Robb WG, Brown VJ (2000) Cholinergic neurotransmission influences covert orientation of visuospatial attention in the rat. Psychopharmacology 150:112–116

    CAS  PubMed  Google Scholar 

  • Potter A, Corwin J, Lang J, Piasecki M, Lenox R, Newhouse PA (1999) Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacology 142:334–342

    Article  CAS  PubMed  Google Scholar 

  • Prendergast MA, Jackson WJ, Terry AV Jr, Decker MW, Arneric SP, Buccafusco JJ (1998) Central nicotinic receptor agonists ABT-418, ABT-089, and (−)-nicotine reduce distractibility in adult monkeys. Psychopharmacology 136:50–58

    CAS  PubMed  Google Scholar 

  • Preston KL, Schuster CR, Seiden LS (1985) Methamphetamine, physostigmine, atropine and mecamylamine: effects on force lever performance. Pharmacol Biochem Behav 23:781–788

    Article  CAS  PubMed  Google Scholar 

  • Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267

    CAS  PubMed  Google Scholar 

  • Ridley RM, Bowes PM, Baker HF, Crow TJ (1984) An involvement of acetylcholine in object discrimination learning and memory in the marmoset. Neuropsychologia 22:253–263

    Article  CAS  PubMed  Google Scholar 

  • Riekkinen P Jr, Riekkinen M, Sirvio J, Riekkinen P (1992) Effects of concurrent nicotinic antagonist and PCPA treatments on spatial and passive avoidance learning. Brain Res 575:247–250

    Article  CAS  PubMed  Google Scholar 

  • Riekkinen P Jr, Riekkinen M, Sirvio J (1993) Cholinergic drugs regulate passive avoidance performance via the amygdala. J Pharmacol Exp Ther 267:1484–1492

    CAS  PubMed  Google Scholar 

  • Robbins TW, Semple J, Kumar R, Truman MI, Shorter J, Ferraro A, Fox B, McKay G, Matthews K (1997) Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacology 134:95–106

    Article  PubMed  Google Scholar 

  • Ross GW, Petrovitch H (2001) Current evidence for neuroprotective effects of nicotine and caffeine against Parkinson’s disease. Drugs Aging 18:797–806

    CAS  PubMed  Google Scholar 

  • Ruotsalainen S, Miettinen R, MacDonald E, Koivisto E, Sirvio J (2000) Blockade of muscarinic, rather than nicotinic, receptors impairs attention, but does not interact with serotonin depletion. Psychopharmacology 148:111–123

    CAS  PubMed  Google Scholar 

  • Rupniak NM, Samson NA, Tye SJ, Field MJ, Iversen SD (1991) Evidence against a specific effect of cholinergic drugs on spatial memory in primates. Behav Brain Res 43:1–6

    CAS  PubMed  Google Scholar 

  • Safer DJ, Allen RP (1971) The central effects of scopolamine in man. Biol Psychiatry 3:347–355

    CAS  PubMed  Google Scholar 

  • Sahakian BJ, Owen AM, Morant NJ, Eagger SA, Boddington S, Crayton L, Crockford HA, Crooks M, Hill K, Levy R (1993) Further analysis of the cognitive effects of tetrahydroaminoacridine (THA) in Alzheimer’s disease: assessment of attentional and mnemonic function using CANTAB. Psychopharmacology 110:395–401

    CAS  PubMed  Google Scholar 

  • Santi A, Weise L (1995) The effects of scopolamine on memory for time in rats and pigeons. Pharmacol Biochem Behav 51:271–277

    Article  CAS  PubMed  Google Scholar 

  • Schauffler HH, McMenamin S, Olson K, Boyce-Smith G, Rideout JA, Kamil J (2001) Variations in treatment benefits influence smoking cessation: results of a randomised controlled trial. Tobacco Control 10:175–180

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Pope-Coleman A, Van Velson M, Menzaghi F, Lloyd GK (1998a) Effects of SIB-1508Y, a novel neuronal nicotinic acetylcholine receptor agonist, on motor behavior in parkinsonian monkeys. Move Disord 13:637–642

    CAS  Google Scholar 

  • Schneider JS, Van Velson M, Menzaghi F, Lloyd GK (1998b) Effects of the nicotinic acetylcholine receptor agonist SIB-1508Y on object retrieval performance in MPTP-treated monkeys: comparison with levodopa treatment. Ann Neurol 43:311–317

    CAS  PubMed  Google Scholar 

  • Schneider JS, Tinker JP, Van Velson M, Menzaghi F, Lloyd GK (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290:731–739

    CAS  PubMed  Google Scholar 

  • Stapleton JA, Lowin A, Russell MA (1999) Prescription of transdermal nicotine patches for smoking cessation in general practice: evaluation of cost-effectiveness. Lancet 354:210–215

    Article  CAS  PubMed  Google Scholar 

  • Swainson R, Hodges JR, Galton CJ, Semple J, Michael A, Dunn BD, Iddon JL, Robbins TW, Sahakian BJ (2001) Early detection and differential diagnosis of Alzheimer’s disease and depression with neuropsychological tasks. Dement Geriatr Cognit Disord 12:265–280

    Article  CAS  Google Scholar 

  • Taffe MA, Weed MR, Gold LH (1999) Scopolamine alters rhesus monkey performance on a novel neuropsychological test battery. Brain Res Cognit Brain Res 8:203–212

    Article  CAS  Google Scholar 

  • Taffe M, Davis S, Gutierrez T, Gold L (2002a) Ketamine impairs multiple cognitive domains in rhesus monkeys. Drug Alcohol Depend 68:175–187

    Article  CAS  PubMed  Google Scholar 

  • Taffe MA, Davis SA, Yuan J, Schroeder R, Hatzidimitriou G, Parsons LH, Ricaurte GA, Gold LH (2002b) Cognitive performance of MDMA-treated rhesus monkeys: sensitivity to serotonergic challenge. Neuropsychopharmacology 27:994–1006

    Article  Google Scholar 

  • Taffe MA, Weed MR, Gutierrez T, Davis SA, Gold LH (2002c) Differential muscarinic and NMDA contributions to visuo-spatial paired-associate learning in rhesus monkeys. Psychopharmacology 160:253–262

    Article  CAS  PubMed  Google Scholar 

  • Taffe MA, Bernot TJ, Mckay HL, Davis SA, Roberts JA, Tuszynski MH (2003a) Adaptation of a computerized neuropsychological testing battery to the aged macaque. Society for Neuroscience Annual Meeting, New Orleans

  • Taffe MA, Huitron-Resendiz S, Schroeder R, Parsons LH, Henriksen SJ, Gold LH (2003b) MDMA exposure alters cognitive and electrophysiological sensitivity to rapid tryptophan depletion in rhesus monkeys. Pharmacol Biochem Behav 76:141–152

    Article  CAS  PubMed  Google Scholar 

  • Taffe MA, Weed MR, Gutierrez T, Davis SA, Gold LH (2004) Modeling a task that is sensitive to dementia of the Alzheimer’s type: Individual differences in acquisition of a visuo-spatial paired-associate learning task in rhesus monkeys. Behav Brain Res 9:123–133

    Article  Google Scholar 

  • Terry AV Jr, Buccafusco JJ, Jackson WJ (1993) Scopolamine reversal of nicotine enhanced delayed matching-to-sample performance in monkeys. Pharmacol Biochem Behav 45:925–929

    Article  CAS  PubMed  Google Scholar 

  • Terry AV Jr, Buccafusco JJ, Prendergast MA (1999) Dose-specific improvements in memory-related task performance by rats and aged monkeys administered the nicotinic-cholinergic antagonist mecamylamine. Drug Dev Res 47:127–136

    Article  CAS  Google Scholar 

  • Terry AV Jr, Risbrough VB, Buccafusco JJ, Menzaghi F (2002) Effects of (±)-4-[[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride (SIB-1553A), a selective ligand for nicotinic acetylcholine receptors, in tests of visual attention and distractibility in rats and monkeys. J Pharmacol Exp Ther 301:284–292

    Google Scholar 

  • Turchi J, Sarter M (1997) Cortical acetylcholine and processing capacity: effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Brain Res Cognit Brain Res 6:147–158

    Article  CAS  Google Scholar 

  • USCDC (1996) Projected smoking-related deaths among youth—United States. Morbid Mortal Wkly Rep 45:971–974

    Google Scholar 

  • van Duijn CM, Hofman A (1991) Relation between nicotine intake and Alzheimer’s disease. BMJ 302:1491–1494

    PubMed  Google Scholar 

  • van Duijn CM, Clayton DG, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E, Kondo K, Mortimer JA et al. (1994) Interaction between genetic and environmental risk factors for Alzheimer’s disease: a reanalysis of case-control studies. EURODEM Risk Factors Research Group. Genet Epidemiol 11:539–551

    PubMed  Google Scholar 

  • van Duijn CM, Havekes LM, Van Broeckhoven C, de Knijff P, Hofman A (1995) Apolipoprotein E genotype and association between smoking and early onset Alzheimer’s disease. BMJ 310:627–631

    PubMed  Google Scholar 

  • Vieregge A, Sieberer M, Jacobs H, Hagenah JM, Vieregge P (2001) Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology 57:1032–1035

    CAS  PubMed  Google Scholar 

  • Weed MR, Gold LH (1998) The effects of dopaminergic agents on reaction time in rhesus monkeys. Psychopharmacology 137:33–42

    Article  CAS  PubMed  Google Scholar 

  • Weed MR, Taffe MA, Polis I, Roberts AC, Robbins TW, Koob GF, Bloom FE, Gold LH (1999) Performance norms for a rhesus monkey neuropsychological testing battery: acquisition and long-term performance. Cognit Brain Res 8:184–201

    Google Scholar 

  • White HK, Levin ED (1999) Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology 143:158–165

    CAS  PubMed  Google Scholar 

  • Wilson AL, Langley LK, Monley J, Bauer T, Rottunda S, McFalls E, Kovera C, McCarten JR (1995) Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav 51:509–514

    CAS  PubMed  Google Scholar 

  • Witte EA, Davidson MC, Marrocco RT (1997) Effects of altering brain cholinergic activity on covert orienting of attention: comparison of monkey and human performance. Psychopharmacology 132:324–334

    CAS  PubMed  Google Scholar 

  • Young JM, Shytle RD, Sanberg PR, George TP (2001) Mecamylamine: new therapeutic uses and toxicity/risk profile. Clin Ther 23:532–565

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by USPHS grant DA13390. This is publication no. 15351-NP from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Taffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katner, S.N., Davis, S.A., Kirsten, A.J. et al. Effects of nicotine and mecamylamine on cognition in rhesus monkeys. Psychopharmacology 175, 225–240 (2004). https://doi.org/10.1007/s00213-004-1804-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-004-1804-z

Keywords

Navigation