Skip to main content
Log in

The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Epilepsy is commonly associated with cognitive impairment. Astrocyte activation and oxidative stress occur following seizures, and play a role in the pathological injury of epilepsy with cognitive impairment. The peroxisome proliferator-activated receptor gamma (PPARγ) has been shown to exhibit neuroprotective and antioxidative effects in CNS diseases. Thus, we hypothesized that rosiglitazone, a PPARγ agonist, would prevent cognitive impairment by inhibiting astrocyte activation and regulating glutathione (GSH) homeostasis after status epilepticus (SE). Using a lithium pilocarpine-induced SE model, we found that rosiglitazone significantly prevented cognitive impairment induced by SE, and potently inhibited astrocyte activation with maintenance of GSH homeostasis in the hippocampus after SE. These protective effects were significantly reversed by co-treatment with the PPARγ antagonist T0070907. These data suggest that rosiglitazone can improve cognitive impairment, and inhibit astrocyte activation and oxidative damage following SE. Rosiglitazone may be a promising agent for treatment of epilepsy involving SE-induced cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Motamedi G, Meador K (2003) Epilepsy and cognition. Epilepsy Behav Suppl 2:S25–S38

    Article  Google Scholar 

  2. Wojtowicz JM (2008) Potential consequences of altered neurogenesis on learning and memory in the epileptic brain. Epilepsia Suppl 5:42–49

    Article  Google Scholar 

  3. Lee JK, Won JS, Singh AK, Singh I (2008) Statin inhibits kainic acid-induced seizure and associated inflammation and hippocampal cell death. Neurosci Lett 440:260–264

    Article  PubMed  CAS  Google Scholar 

  4. Pestana RR, Kinjo ER, Hernandes MS, Britto LR (2010) Reactive oxygen species generated by NADPH oxidase are involved in neurodegeneration in the pilocarpine model of temporal lobe epilepsy. Neurosci Lett 484:187–191

    Article  PubMed  CAS  Google Scholar 

  5. Elsharkawy AE, Alabbasi AH, Pannek H, Oppel F, Schulz R, Hoppe M, Hamad AP, Nayel M, Issa A, Ebner A (2009) Long-term outcome after temporal lobe epilepsy surgery in 434 consecutive adult patients. J Neurosurg 110:1135–1146

    Article  PubMed  Google Scholar 

  6. Swann JW (2004) The effects of seizures on the connectivity and circuitry of the developing brain. Ment Retard Dev Disabil Res Rev. 10:96–100

    Article  PubMed  Google Scholar 

  7. Jansson L, Wennström M, Johanson A, Tingström A (2009) Glial cell activation in response to electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psyc 33:1119–1128

    Article  Google Scholar 

  8. Nihal C, de Lanerolle, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7:424–438

    Article  Google Scholar 

  9. Ricci G, Volpi L, Pasquali L, Petrozzi L, Siciliano G (2009) Astrocyte-neuron interactions in neurological disorders. J Biol Phys 35:317–336

    Article  PubMed  CAS  Google Scholar 

  10. Agarwal NB, Agarwal NK, Mediratta PK, Sharma KK (2011) Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure 20:257–262

    Article  PubMed  Google Scholar 

  11. Freitas RM (2009) Investigation of oxidative stress involvement in hippocampus in epilepsy model induced by pilocarpine. Neurosci Lett 462:225–229

    Article  PubMed  CAS  Google Scholar 

  12. Turner DA, Adamson DC (2011) Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J Neuropathol Exp Neurol 70:167–176

    Article  PubMed  CAS  Google Scholar 

  13. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: Maintenance regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    Article  PubMed  CAS  Google Scholar 

  14. Lee YH, Lee NH, Bhattarai G, Yun JS, Kim TI, Jhee EC, Yi HK (2010) PPARgamma inhibits inflammatory reaction in oxidative stress induced human diploid fibloblast. Cell Biochem Funct 28:490–496

    Article  PubMed  CAS  Google Scholar 

  15. Uryu S, Harada J, Hisamoto M, Oda T (2002) Troglitazone inhibits both post-glutamate neurotoxicity and low-potassium-induced apoptosis in cerebellar granule neurons. Brain Res 924:229–236

    Article  PubMed  CAS  Google Scholar 

  16. Sun H, Huang Y, Yu X, Li YN, Yang J, Li R, Deng YC, Zhao G (2008) Peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine-induced status epilepticus in rats. Int J Devl Neurosci 26:505–515

    Article  CAS  Google Scholar 

  17. Yu X, Shao XG, Sun H, Li YN, Yang J, Deng YC, Huang YG (2008) Activation of cerebral peroxisome proliferator-activated receptors gamma exerts neuroprotection by inhibiting oxidative stress following pilocarpine-induced status epilepticus. Brain Res 1200:146–158

    Article  PubMed  CAS  Google Scholar 

  18. Racine RJ (1972) Modification of seizure activity by electrical stimulation: IIR Motor seizure Electroencephalogr. Clin Neurophysiol 32:281–294

    Article  CAS  Google Scholar 

  19. Becker A, Grecksch G, Thiemann W, Hoellt V (2000) Pentylentetrazolkindling modulates stimulated dopamine release in the nucleus accumbens. Pharmacol Biochem Behav 66:425–428

    Article  PubMed  CAS  Google Scholar 

  20. Winters RA, Zukowski J, Ercal N, Matthews RH, Spitz DR (1995) Analysis of glutathione, glutathione disulfide, cysteine, homocysteine, and other biological thiols by high-performance liquid chromatography following derivatization with N-(1-pyrenyl) maleimide. Anal Biochem 227:14–21

    Article  PubMed  CAS  Google Scholar 

  21. Pouzet B, Zhang WN, Feldon J, Rawlins JN (2002) Hippocampaln lesioned rats are able to learn a spatial position using non-spatial strategies. Behav Brain Res 133:279–291

    Article  PubMed  Google Scholar 

  22. Jung KH, Chu K, Lee ST, Kim JY, Sinn DI, Kim JM, Park DK, Lee JJ, Kim SU, Kim M, Lee SK, Roha JK (2006) Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis 23:237–246

    Article  PubMed  CAS  Google Scholar 

  23. Vijayaraghavan L, Natarajan S, Krishnamoorthy ES (2011) Peri-ictal and ictal cognitive dysfunction in epilepsy. Behav Neurol 24:27–34

    PubMed  Google Scholar 

  24. Ding S, Fellin T, Zhu Y, Lee SY, Auberson YP, Meaney DF, Coulter DA, Carmignoto G, Haydon PG (2007) Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 27:10674–10684

    Article  PubMed  CAS  Google Scholar 

  25. Gómez-Gonzalo M, Losi G, Chiavegato A, Zonta M, Cammarota M, Brondi M, Vetri F, Uva L, Pozzan T, de Curtis M, Ratto GM, Carmignoto G (2010) An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Biol 8:e1000352

    Article  PubMed  Google Scholar 

  26. Waldbaum S, Liang LP, Patel M (2010) Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis. J Neurochem 115:1172–1182

    Article  PubMed  CAS  Google Scholar 

  27. Peternel S, Pilipović K, Zupan G (2009) Seizure susceptibility and the brain regional sensitivity to oxidative stress in male and female rats in the lithium-pilocarpine model of temporal lobe epilepsy. Prog Neuropsychopharmacol Biol Psyc 33:456–462

    Article  CAS  Google Scholar 

  28. Abe K, Nakanishi K, Saito H (2000) The possible role of endogenous glutathione as an anticonvulsant in mice. Brain Res 854:235–238

    Article  PubMed  CAS  Google Scholar 

  29. Sain H, Sharma B, Jaggi AS (2011) Singh N Pharmacological investigations on potential of peroxisome proliferator-activated receptor-gamma agonists in hyperhomocysteinemia-induced vascular dementia in rats. Neuroscience

  30. Kaur B, Singh N, Jaggi AS (2009) Exploring mechanism of pioglitazone-induced memory restorative effect in experimental dementia. Fundam Clin Pharmacol 23:557–566

    Article  PubMed  CAS  Google Scholar 

  31. Kim EK, Kown KB, Koo BS, Han MJ, Song MY, Song EK, Han MK, Park JW, Ryu DG, Park BH (2007) Activation of perxisome proliferator-activated receptor-gamma protects pancreatic beta-cells from cytokine-induced cytotoxicity via NF kappaB pathway. Int J Biochem Cell Biol 39:1260–1275

    Article  PubMed  CAS  Google Scholar 

  32. Yuan L, Kaplowitz N (2009) Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med 30:29–41

    Article  PubMed  CAS  Google Scholar 

  33. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance regulation and functional implications for metabolite trafficking. Brain Res Rev 63:177–188

    Article  PubMed  CAS  Google Scholar 

  34. de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7:424–438

    Article  PubMed  Google Scholar 

  35. Zhao CS, Overstreet-Wadiche L (2008) Integration of adult generated neurons during epileptogenesis. Epilepsia Suppl 5:3–12

    Article  Google Scholar 

  36. Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, Sullivan PG (2011) Pioglitazone attenuates mitochondrial dysfunction cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol 227:128–135

    Article  PubMed  CAS  Google Scholar 

  37. Kaundal RK, Sharma SS (2011) GW1929: a nonthiazolidinedione PPARγ agonist ameliorates neurological damage in global cerebral ischemic-reperfusion injury through reduction in inflammation and DNA fragmentation. Behav Brain Res 216:606–612

    Article  PubMed  CAS  Google Scholar 

  38. Rodriguez-Rivera J, Denner L, Dineley KT (2011) Rosiglitazone reversal of Tg2576 cognitive deficits is independent of peripheral gluco-regulatory status. Behav Brain Res 216:255–261

    Article  PubMed  CAS  Google Scholar 

  39. Jiang Q, Heneka M, Landreth GE (2008) The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer’s disease: therapeutic implications. CNS Drugs 22:1–14

    Article  PubMed  CAS  Google Scholar 

  40. Arif H, Buchsbaum R, Weintraub D, Pierro J, Resor SR Jr, Hirsch LJ (2009) Patient-reported cognitive side effects of antiepileptic drugs: predictors and comparison of all commonly used antiepileptic drugs. Epilepsy Behav 14:202–209

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the “Taiwan Guang Hua Fund”. We thank Dr. Dong Yan (Department of Immunology, Xijing Hospital) for his valuable technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Xin, Y., HaiQin, W. et al. The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol Sci 33, 559–566 (2012). https://doi.org/10.1007/s10072-011-0774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-011-0774-2

Keywords

Navigation