Skip to main content

Therapeutic Application of Stem Cell and Gene Therapy in Parkinson’s Disease

  • Chapter
  • First Online:
Pathology, Prevention and Therapeutics of Neurodegenerative Disease

Abstract

The second most common neurodegenerative disease, Parkinson’s disease (PD) is characterized by progressive loss of dopaminergic neurons which in turn causes the occurrence of several motor symptoms.

Current therapeutic options for PD are available to provide relief in primary motor symptoms, but their long-term effectiveness is limited. For this reason, alternative therapeutic options are being required in the form of stem cell and gene-based therapies. Several open-label clinical trials like intrastriatal transplantation of human fetal mesencephalic tissue have provided proof of principle that stem cell replacement therapy may provide significant relief to motor impairment in some PD patients, particularly diagnosed at early stage of disease onset. Today, stem cell-based therapies utilizing different mechanisms are being investigated to provide alternative treatment options. These therapies include cell replacement therapy itself, but also involve immunomodulatory and trophic actions to help promote intrinsic repair processes in damaged areas.

Furthermore, promising approaches based on gene therapy are also being developed for the cure of PD patients, some of which have already entered in clinical phases of their development. These clinical trials are mainly based on the treatment of motor symptoms (by modulating activity of the basal ganglia or by the introduction of genes involved in dopamine synthesis) or increasing dopaminergic neuron survival by transducing genes for neurotrophic factors.

In this chapter, we summarize current studies involving the use of stem cell and gene-based treatment for PD management. Here we provide an overview of currently available different types of stem cells and the different strategies of gene therapy that are being developed to treat PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386:896–912.

    Article  CAS  PubMed  Google Scholar 

  2. Lindvall O. Clinical translation of stem cell transplantation in Parkinson’s disease. J Intern Med. 2016;279:30–40.

    Article  CAS  PubMed  Google Scholar 

  3. Morizane A, Takahashi J. Cell therapy for Parkinson’s disease. Neurol Med Chir. 2016;56:102–9.

    Article  Google Scholar 

  4. Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.

    Article  PubMed  Google Scholar 

  5. La Cognata VL, Morello G, D’Agata V, et al. Copy number variability in Parkinson’s disease: assembling the puzzle through a systems biology approach. Hum Genet. 2016;136(1):13–37.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lindvall O. Treatment of Parkinson’s disease using cell transplantation. Philos Trans R Soc Lond B Biol Sci. 2015;370:20140370.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Engelender S, Isacson O. The threshold theory of Parkinson’s disease. Trends Neurosci. 2016;40(1):4–14. https://doi.org/10.1016/j.tins.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  8. Oertel W, Schulx JB. Current and experimental treatments of Parkinson’s disease: a guide for neuroscientists. J Neurochem. 2016;139:325–37.

    Article  CAS  PubMed  Google Scholar 

  9. Heumann R, Moratalla R, Herrero MT, et al. Dyskinesia in Parkinson’s disease: mechanisms and current non-pharmacological interventions. J Neurochem. 2014;30(4):472–89.

    Article  Google Scholar 

  10. Barker RA, Barrett J, Mason SL, et al. Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol. 2013;12(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  11. Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30(5):194–202.

    Article  PubMed  Google Scholar 

  12. Piccini P, Brooks DJ, Björklund A, et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci. 1999;2(12):1137–40.

    Article  CAS  PubMed  Google Scholar 

  13. Hallett PJ, Cooper O, Sadi D, et al. Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep. 2014;7(6):1755–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kordower JH, Chu Y, Hauser RA, et al. Transplanted dopaminergic neurons develop PD pathologic changes: a second case report. Mov Disord. 2008;23(16):2303–6.

    Article  PubMed  Google Scholar 

  15. Li JY, Englund E, Widner H, et al. Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord. 2010;25(8):1091–6.

    Article  PubMed  Google Scholar 

  16. Kefalopoulou Z, Politis M, Piccini P, et al. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol. 2014;71(1):83–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lindvall O, Barker RA, Brüstle O, et al. Clinical translation of stem cells in neurodegenerative disorders. Cell Stem Cell. 2012;10(2):151–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Q, Chen W, Tan S, et al. Stem cells for modeling and therapy of Parkinson’s disease. Human Gene Ther. 2017;28(1):85–98.

    Article  CAS  Google Scholar 

  19. Zhu B, Caldwell M, Song B. Development of stem cell-based therapies for Parkinson’s disease. Int J Neurosci. 2016;126(11):955–62.

    Article  CAS  PubMed  Google Scholar 

  20. Farzanehfar P. Towards a better treatment option for Parkinson’s disease: a review of adult neurogenesis. Neurochem Res. 2016;41(12):3161–70.

    Article  CAS  PubMed  Google Scholar 

  21. Chambers SM, Fasano CA, Papapetrou EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27(3):275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kriks S, Shim JW, Piao J, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soldner F, Hockemeyer D, Bear C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell. 2009;136(5):964–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sánchez-Danés A, Richaud-Patin Y, Carballo-Carbajal I, et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med. 2012;4(5):380–95.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Courtois ET, Castillo CG, Seiz EG, et al. In vitro and in vivo enhanced generation of human A9 dopaminergic neurons from neural stem cells by Bcl-XL. J Biol Chem. 2010;285(13):9881–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Villa A, Liste I, Courtois ET, et al. Generation and properties of a new human ventral mesencephalic neural stem cell line. Exp Cell Res. 2009;315(11):1860–74.

    Article  CAS  PubMed  Google Scholar 

  27. Lévesque MF, Neuman T, Rezak M. Therapeutic microinjection of autologous adult human neural stem cells and differentiated neurons for Parkinson’s disease: five-year post-operative outcome. Open Stem Cell J. 2009;1:20–9.

    Article  Google Scholar 

  28. Glavaski-Joksimovic A, Bohn MC. Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Exp Neurol. 2013;247:25–38.

    Article  CAS  PubMed  Google Scholar 

  29. Ramos-Moreno T, Lendínez JG, Pino-Barrio MJ, et al. Clonal human fetal ventral mesencephalic dopaminergic neuron precursors for cell therapy research. PLoS One. 2012;7(12):e52714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim HJ, McMillan E, Han F, et al. Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1. Stem Cells. 2009a;27(2):390–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bonnamain V, Neveu I, Naveilhan P. Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Front Cell Neurosci. 2012;6(17):1–8.

    Google Scholar 

  32. Ribeiro D, Laguna Goya R, Ravindran G, et al. Efficient expansion and dopaminergic differentiation of human fetal ventral midbrain neural stem cells by midbrain morphogens. Neurobiol Dis. 2013;49:118–27.

    Article  CAS  PubMed  Google Scholar 

  33. Cacci E, Villa A, Parmar M, et al. Generation of human cortical neurons from a new immortal fetal neural stem cell line. Exp Cell Res. 2007;313(3):588–601.

    Article  CAS  PubMed  Google Scholar 

  34. Collins E, Gu F, Qi M, et al. Differential efficacy of human mesenchymal stem cells based on source of origin. J Immunol. 2014;193(9):4381–90.

    Article  CAS  PubMed  Google Scholar 

  35. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paul G, Özen I, Christophersen NS, et al. The adult human brain harbors multipotent perivascular mesenchymal stem cell. PLoS One. 2012;7(4):e35577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Joyce N, Annett G, Wirthlin L, et al. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933–46.

    Article  PubMed  Google Scholar 

  39. Hayashi T, Wakao S, Kitada M, et al. Autologous mesenchymal stem-cell derived dopaminergic neurons function in parkisonina macaques. J Clin Invest. 2013;123:272–84.

    Article  CAS  PubMed  Google Scholar 

  40. Hardy SA, Maltman DJ, Przyborski SA. Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther. 2008;3(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  41. Kim YJ, Park HJ, Lee G, et al. Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia. 2009b;57:13–23.

    Article  PubMed  Google Scholar 

  42. Siniscalco D, Giordano C, Galderisi U, et al. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci. 2010;67(4):655–69.

    Article  CAS  PubMed  Google Scholar 

  43. Kitada M, Dezawa M. Parkinson’s disease and mesenchymal stem cells: potential for cell-based therapy. Parkinsons Dis. 2012;2012:873706.

    PubMed Central  PubMed  Google Scholar 

  44. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  45. Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9:432–49.

    Article  CAS  PubMed  Google Scholar 

  46. Barker RA, Parmar M, Kirkeby A, et al. Are stem cell-based therapies for Parkinson’s disease ready for the clinic in 2016? J Parkinsons Dis. 2016;6(1):57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grealish S, Diguet E, Kirkeby A, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell. 2014;15:653–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kirkeby A, Grealish S, Wolf DA, et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012;1(6):703–14.

    Article  CAS  PubMed  Google Scholar 

  49. Petit GH, Olsson TT, Brundin P. The future of cell therapies and brain repair: Parkinson’s disease leads the way. Neuropathol Appl Neurobiol. 2014;40(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  50. Martínez-Morales PL, Revilla A, Ocaña I, et al. Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev. 2013;9(5):685–99.

    Article  Google Scholar 

  51. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  CAS  PubMed  Google Scholar 

  52. Revilla A, González C, Iriondo A, et al. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J Tissue Eng Regen Med. 2015;10(11):893–907. https://doi.org/10.1002/term.2021.

    Article  CAS  PubMed  Google Scholar 

  53. Garber K. Inducing translation. Nat Biotechnol. 2013;31(6):483–6.

    Article  CAS  PubMed  Google Scholar 

  54. Choi DH, Kim JH, Kim SM, et al. Therapeutic potential of induced neural stem cells for Parkinson’s disease. Int J Mol Sci. 2017;18(1):224.

    Article  PubMed Central  Google Scholar 

  55. Xu Z, Chu X, Jiang H, et al. Induced dopaminergic neurons: a new promise for Parkinson’s disease. Redox Biol. 2017;11:606–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Playne R, Connor B. Understanding Parkinson’s disease through the use of cell reprogramming. Stem Cell Rev. 2017;13(2):151–69.

    Article  CAS  Google Scholar 

  57. Allen PJ, Feigin A. Gene-based therapies in Parkinson’s disease. Neurotherapeutics. 2014;11(1):60–7.

    Article  CAS  PubMed  Google Scholar 

  58. Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res. 2010;61(1):14–26.

    Article  CAS  PubMed  Google Scholar 

  59. Björklund A, Kirik D, Rosenblad C, et al. Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res. 2000;886(1–2):82–98.

    Article  PubMed  Google Scholar 

  60. Miranpuri GS, Kumbier L, Hinchman A, et al. Gene-based therapy of Parkinson’s disease: translation from animal model to human clinical trial employing convection enhanced delivery. Ann Neurosci. 2012;19(3):133–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Palfi S, Gurruchaga JM, Ralph GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase ½ trial. Lancet. 2014;383(9923):1138–46.

    Article  CAS  PubMed  Google Scholar 

  62. Azzouz M, Martin-Rendon E, Barber RD, et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci. 2002;22(23):10302–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bartus RT, Baumann TL, Siffert J, et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology. 2013;80(18):1698–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Coune PG, Schneider BL, Aebischer P. Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med. 2012;2(4):a009431.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Feng LR, Maguire-Zeiss KA. Gene therapy in Parkinson’s disease: rationale and current status. CNS Drugs. 2010;24(3):177–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feigin A, Kaplitt MG, Tang C, et al. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson’s disease. Proc Natl Acad Sci U S A. 2007;104(49):19559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hamani C, Saint-Cyr JA, Fraser J, et al. The subthalamic nucleus in the context of movement disorders. Brain. 2004;127(Pt 1):4–20.

    Article  PubMed  Google Scholar 

  68. Emborg ME, Carbon M, Holden JE, et al. Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab. 2007;27(3):501–9.

    Article  CAS  PubMed  Google Scholar 

  69. LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–19.

    Article  CAS  PubMed  Google Scholar 

  70. Luo J, Kaplitt MG, Fitzsimons HL, et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science. 2002;298(5592):425–9.

    Article  CAS  PubMed  Google Scholar 

  71. Lee B, Lee H, Nam YR, et al. Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Ther. 2005;12(15):1215–22.

    Article  CAS  PubMed  Google Scholar 

  72. Muramatsu S, Fujimoto K, Kato S, et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther. 2010;18(9):1731–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Witt J, Marks WJ Jr. An update on gene therapy in Parkinson’s disease. Curr Neurol Neurosci Rep. 2011;11(4):362–70.

    Article  CAS  PubMed  Google Scholar 

  74. Bankiewicz KS, Eberling JL, Kohutnicka M, et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol. 2000;164(1):2–14.

    Article  CAS  PubMed  Google Scholar 

  75. Bankiewicz KS, Forsayeth J, Eberling JL, et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther. 2006;14(4):564–70.

    Article  CAS  PubMed  Google Scholar 

  76. Mittermeyer G, Christine CW, Rosenbluth KH, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther. 2012;23(4):377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gash DM, Zhang Z, Ovadia A, et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature. 1996;380(6571):252–5.

    Article  CAS  PubMed  Google Scholar 

  78. Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science. 2000;290(5492):767–73.

    Article  CAS  PubMed  Google Scholar 

  79. Salvatore MF, Ai Y, Fischer B, et al. Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol. 2006;202(2):497–505.

    Article  CAS  PubMed  Google Scholar 

  80. Eslamboli A, Cummings RM, Ridley RM, et al. Recombinant adeno-associated viral vector (rAAV) delivery of GDNF provides protection against 6-OHDA lesion in the common marmoset monkey (Callithrix jacchus). Exp Neurol. 2003;184(1):536–48.

    Article  CAS  PubMed  Google Scholar 

  81. Marks WJ Jr, Bartus RT, Siffert J, et al. Gene delivery of AAV2-neurturin for Parnson’s disease: a double-blind, randomized, controlled trial. Lancet Neurol. 2010;9(12):1164–72.

    Article  CAS  PubMed  Google Scholar 

  82. Olanow CW, Bartus RT, Baumann TL, et al. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol. 2015;78(2):248–57.

    Article  Google Scholar 

  83. Maguire CA, Ramirez SH, Merkel SF, et al. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics. 2014;11(4):817–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank members of their laboratory for their research work and fruitful discussions. Research at the authors’ laboratory was funded by the MICINN-ISCIII (PI-10/00291 and MPY1412/09), MINECO (SAF2015-71140-R), and Comunidad de Madrid (NEUROSTEMCM consortium; S2010/BMD-2336).

Author Disclosure Statement: The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Liste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palmer, C., Coronel, R., Bernabeu-Zornoza, A., Liste, I. (2019). Therapeutic Application of Stem Cell and Gene Therapy in Parkinson’s Disease. In: Singh, S., Joshi, N. (eds) Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-0944-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0944-1_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0943-4

  • Online ISBN: 978-981-13-0944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics