Skip to main content
Log in

The enhancement effect of beta-boswellic acid on hippocampal neurites outgrowth and branching (an in vitro study)

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Increasing evidences implicate impairment of axonal integrity in mechanisms underlying neurodegenerative disorders. Beta-boswellic acid (BBA) is the major component of Boswellia serrata gum. This resin has long been used in Ayurveda (India’s traditional medicine) to prevent amnesia. In this study, the effect of BBA was examined on neurites outgrowth and branching as well as on polymerization dynamics of tubulin. The morphometric parameters (axonal length and neuritis branching) were examined microscopically after treating the hippocampal cells with BBA. Also the assembly process of tubulin was assessed using UV/V is spectrophotometer through following of absorbance at 350 nm. The results revealed that BBA could significantly enhance neurite outgrowth, branching, and tubulin polymerization dynamics. The obtained results suggest that enhancing effect of BBA on microtubule polymerization kinetics might be the origin of increasing axonal outgrowth and branching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalil K, Szebenyi G, Dent EW (2000) Common mechanisms underlying growth cone guidance and axon branching. J Neurobiol 44:145–158

    Article  CAS  PubMed  Google Scholar 

  2. Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

    Article  CAS  PubMed  Google Scholar 

  3. Nelson R (2005) Microtubule-stabilising drugs may be therapeutic in AD. Lancet Neurol 4:83–84

    Article  PubMed  Google Scholar 

  4. Ngwalali PM, Yonemitsu K, Kibayashi K et al (2002) Neuropathological diagnosis of Alzheimer’s disease in forensic autopsy of elderly persons with fatal accident. Leg Med 4:223–231

    Article  CAS  Google Scholar 

  5. Gómez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24

    Article  PubMed  Google Scholar 

  6. Sergeant N, Bretteville A, Hamdane M et al (2008) Biochemistry of tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics 5:207–224

    Article  CAS  PubMed  Google Scholar 

  7. Rapoport M, Dawson HN, Binder LI et al (2002) Tau is essential to beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 99:6364–6369

    Article  CAS  PubMed  Google Scholar 

  8. Wahrle SE, Jiang H, Parsadanian M et al (2005) Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 280:43236–43242

    Article  CAS  PubMed  Google Scholar 

  9. Nakayama T, Sawada T (2002) Involvement of microtubule integrity in memory impairment caused by colchicines. Pharmacol Biochem Behav 71:119–138

    Article  CAS  PubMed  Google Scholar 

  10. Lee VM, Daughenbaugh R, Trojanowski JQ (1994) Microtubule stabilizing drugs for the treatment of Alzheimer’s disease. Neurobiol Aging 15:S87–589

    Article  PubMed  Google Scholar 

  11. Manyam BV (1991) Dementia in Ayurveda. J Altern Complement Med 5:81–88

    Article  Google Scholar 

  12. Mishra L, Singh BB, Dagenais S (2001) Healthcare and disease management in Ayurveda. Altern Ther Health Med 7:44–50

    CAS  PubMed  Google Scholar 

  13. Etzel R (1996) Special extract of Boswellia serrata (H15) in the treatment of rheumatoid arthritis. Phytomedicine 3:67–70

    Google Scholar 

  14. Ammon HP, Mack T, Singh GB et al (1991) Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia serrata. Planta Med 57:203–207

    Article  CAS  PubMed  Google Scholar 

  15. Jauch J, Bergmann J (2003) An efficient method for the large-scale preparation of 3-O-acetyl-11-oxo-β-boswellic acid and other boswellic acids. Eur J Org Chem 24:4752–4756

    Article  Google Scholar 

  16. Montanari T, Bevilacqua E (2002) Effect of Maytenus ilicifolia Mart on pregnant mice. Contraception 65:171–175

    Article  PubMed  Google Scholar 

  17. Goslin K, Banker G (1991) Rat hippocampal neurons in low-density culture. In: Culturing nerve cells. MIT Press, Cambridge, pp 251–281

  18. Ray J, Peterson DA, Schinstine M et al (1993) Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci 90:3602–3606

    Article  CAS  PubMed  Google Scholar 

  19. Fletcher TL, Cameron P, De Camilli P et al (1991) The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J Neurosci 11:1617–1626

    CAS  PubMed  Google Scholar 

  20. Lepekhin EA, Walmod PS, Berezin A et al (2001) Evaluation of cell morphology. Methods Mol Biol 161:85–100

    CAS  PubMed  Google Scholar 

  21. Weingarten MD, Lockwood AH, Hwo SY et al (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci 72:1852–1862

    Article  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  24. Tseng HC, Graves DJ (1998) Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules. Biochem Biophys Res Commun 250:726–730

    Article  CAS  PubMed  Google Scholar 

  25. Bass PW (1997) Microtubules and axonal growth. Curr Opin Cell Biol 9:29–36

    Article  Google Scholar 

  26. Wenqian Y, Matthew J, Schwei W et al (1996) Microtubule transport and assembly during axon growth. J Biol Chem 133:151–157

    Google Scholar 

  27. Nogales E (1999) A structural view of microtubule dynamics. Cell Mol Life Sci 56:133–142

    Article  CAS  PubMed  Google Scholar 

  28. Detrich HW, Jordan MA, Wilson L et al (1985) Mechanism of microtubule assembly, changes in polymer structure and organization during assembly of sea urchin egg tubulin. J Biol Chem 260:9479–9490

    CAS  PubMed  Google Scholar 

  29. Daniels MP (1972) Colchicine inhibition of nerve fiber formation in vitro. J Cell Biol 53:164–176

    Article  CAS  PubMed  Google Scholar 

  30. Yamada KM, Spooner BS, Wessells NK (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol 49:614–635

    Article  CAS  PubMed  Google Scholar 

  31. Bentley D, Toroian RA (1986) Disoriented pathfinding by pioneer neuron growth cones deprived of filopodia by cytochalasin treatment. Nature 323:712–715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to extend our special thanks to Prof. Thomas Simmet from Ulm University for providing BBA. We also thank Ms. Hatami, Administrator of Center for Microscopy and Imaging in the Institute of Biochemistry and Biophysics (IBB), the University of Tehran, for her kind efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossein Riazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karima, O., Riazi, G., Yousefi, R. et al. The enhancement effect of beta-boswellic acid on hippocampal neurites outgrowth and branching (an in vitro study). Neurol Sci 31, 315–320 (2010). https://doi.org/10.1007/s10072-010-0220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-010-0220-x

Keywords

Navigation