Skip to main content
Log in

Baccharin from Brazilian green propolis induces neurotrophic signaling pathways in PC12 cells: potential for axonal and synaptic regeneration

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are characterized by progressive loss of the structure and function of specific neuronal populations, and have been associated with reduced neurotrophic support. Neurotrophins, like NGF (nerve growth factor), are endogenous proteins that induce neuritogenesis and modulate axonal growth, branching, and synapsis; however, their therapeutic application is limited mainly by low stability, short half-life, and inability to cross the blood–brain barrier (BBB). Small neurotrophic molecules that have suitable pharmacokinetics and are able to cross the BBB are potential candidates for neuroprotection. Baccharin is a bioactive small molecule isolated from Brazilian green propolis. In the present study, we investigated the neurotrophic and neuroprotective potential of baccharin in the PC12 cell neuronal model. We used pharmacological inhibitors (K252a, LY294002, and U0126), and ELISA (phospho-trkA, phospho-Akt, and phospho-MEK) to investigate the involvement of trkA receptor, PI3k/Akt pathway, and MAPK/Erk pathway, respectively. Additionally, we evaluated the expression of axonal (GAP-43) and synaptic (synapsin I) proteins by western blot. The results showed that baccharin induces neuritogenesis in NGF-deprived PC12 cells, through activation of trkA receptor and the downstream signaling cascades (PI3K/Akt and MAPK/ERK), which is the same neurotrophic pathway activated by NGF in PC12 cells and neurons. Baccharin also induced the expression of GAP-43 and synapsin I, which mediate axonal and synaptic plasticity, respectively. Additionally, in silico predictions of baccharin showed favorable physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness. Altogether, these findings suggest that baccharin is a promising neurotrophic agent whose therapeutic application in neurodegeneration should be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Original source data presented in figures and full-length immunoblot membranes are presented in Supplementary Material (S2).

References

  • Aga H, Shibuya T, Sugimoto T, Kurimoto M, Nakajima S (1994) Isolation and identification of antimicrobial compounds in Brazilian propolis. Biosci Biotechnol Biochem 58:945–946

    Article  CAS  Google Scholar 

  • Akao Y, Maruyama H, Matsumoto K, Ohguchi K, Nishizawa K, Sakamoto T, Araki Y, Mishima S, Nozawa Y (2003) Cell growth inhibitory effect of cinnamic acid derivatives from propolis on human tumor cell lines. Biol Pharm Bull 26:1057–1059

    Article  CAS  PubMed  Google Scholar 

  • Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138:155–175

    Article  CAS  PubMed  Google Scholar 

  • Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, Causing CG, Miller FD (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barros Silva, R., Santos, N. A., Martins, N. M., Ferreira, D. A., Barbosa, F., JR., Oliveira Souza, V. C., Kinoshita, A., Baffa, O., Del-Bel, E. & Santos, A. C. 2013. Caffeic acid phenethyl ester protects against the dopaminergic neuronal loss induced by 6-hydroxydopamine in rats. Neuroscience, 233, 86-94

  • Bennison SA, Blazejewski SM, Smith TH, Toyo-Oka K (2020) Protein kinases: master regulators of neuritogenesis and therapeutic targets for axon regeneration. Cell Mol Life Sci 77:1511–1530

    Article  CAS  PubMed  Google Scholar 

  • Bernardes CP, Santos NAG, Sisti FM, Ferreira RS, Santos-Filho NA, Cintra ACO, Cilli EM, Sampaio SV, Santos AC (2018) A synthetic snake-venom-based tripeptide (Glu-Val-Trp) protects PC12 cells from MPP(+) toxicity by activating the NGF-signaling pathway. Peptides 104:24–34

    Article  CAS  PubMed  Google Scholar 

  • Bhargava P, Grover A, Nigam N, Kaul A, Doi M, Ishida Y, Kakuta H, Kaul SC, Terao K, Wadhwa R (2018) Anticancer activity of the supercritical extract of Brazilian green propolis and its active component, artepillin C: bioinformatics and experimental analyses of its mechanisms of action. Int J Oncol 52:925–932

    CAS  PubMed  Google Scholar 

  • Calabrese EJ (2008) Enhancing and regulating neurite outgrowth. Crit Rev Toxicol 38:391–418

    Article  CAS  PubMed  Google Scholar 

  • Conti AM, Fischer SJ, Windebank AJ (1997) Inhibition of axonal growth from sensory neurons by excess nerve growth factor. Ann Neurol 42:838–846

    Article  CAS  PubMed  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  • Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26:397–406

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira PF, Leandro LF, Montanheiro G, Bastos JK, Da Silva Filho AA, Tavares DC (2012) Baccharin prevents genotoxic effects induced by methyl methanesulfonate and hydrogen peroxide in V79 cells. J Food Sci 77:T138–T142

    Article  PubMed  CAS  Google Scholar 

  • De Sousa JP, Leite MF, Jorge RF, Resende DO, Da Silva Filho AA, Furtado NA, Soares AE, Spadaro AC, De Magalhaes PM, Bastos JK (2011) Seasonality role on the phenolics from cultivated Baccharis dracunculifolia. Evid Based Complement Alternat Med 2011:464289

    Article  PubMed  PubMed Central  Google Scholar 

  • Dos Santos NA, Martins NM, Silva Rde B, Ferreira RS, Sisti FM, Dos Santos AC (2014) Caffeic acid phenethyl ester (CAPE) protects PC12 cells from MPP+ toxicity by inducing the expression of neuron-typical proteins. Neurotoxicology 45:131–138

    Article  CAS  PubMed  Google Scholar 

  • Encinas M, Iglesias M, Llecha N, Comella JX (1999) Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 73:1409–1421

    Article  CAS  PubMed  Google Scholar 

  • Ferreira RS, Dos Santos NAG, Bernardes CP, Sisti FM, Amaral L, Fontana ACK, Dos Santos AC (2019) Caffeic acid phenethyl ester (CAPE) protects PC12 cells against cisplatin-induced neurotoxicity by activating the AMPK/SIRT1, MAPK/Erk, and PI3k/Akt signaling pathways. Neurotox Res 36:175–192

    Article  CAS  PubMed  Google Scholar 

  • Fonseca YM, Marquele-Oliveira F, Vicentini FT, Furtado NA, Sousa JP, Lucisano-Valim YM, Fonseca MJ (2011) Evaluation of the potential of Brazilian propolis against UV-induced oxidative stress. Evid Based Complement Alternat Med 2011

  • Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Zhang CP, Wang K, Li GQ, Hu FL (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacovina AT, Zhong F, Khazanova E, Lev E, Deora AB, Hajjar KA (2001) Neuritogenesis and the nerve growth factor-induced differentiation of PC-12 cells requires annexin II-mediated plasmin generation. J Biol Chem 276:49350–49358

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic JN, Benfenati F, Siow YL, Sihra TS, Sanghera JS, Pelech SL, Greengard P, Czernik AJ (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A 93:3679–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano Y, Horie N, Doi S, Aramaki F, Maeda H, Hiragami F, Kawamura K, Motoda H, Koike Y, Akiyama J, Eguchi S, Hashimoto K (2008) Artepillin C derived from propolis induces neurite outgrowth in PC12m3 cells via ERK and p38 MAPK pathways. Neurochem Res 33:1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014:140–154

    Article  CAS  PubMed  Google Scholar 

  • Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R, Popov S (1999) Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol 64:235–240

    Article  CAS  PubMed  Google Scholar 

  • L’episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S, Marchetti B (2011) A Wnt1 regulated frizzled-1/beta-catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 6:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado JL, Assuncao AK, Da Silva MC, Dos Reis AS, Costa GC, ArrudaDde S, Rocha BA, Vaz MM, Paes AM, Guerra RN, Berretta AA, Do Nascimento FR (2012) Brazilian green propolis: anti-inflammatory property by an immunomodulatory activity. Evid Based Complement Alternat Med 2012:157652

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishima S, Ono Y, Araki Y, Akao Y, Nozawa Y (2005) Two related cinnamic acid derivatives from Brazilian honey bee propolis, baccharin and drupanin, induce growth inhibition in allografted sarcoma S-180 in mice. Biol Pharm Bull 28:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • More SV, Koppula S, Kim IS, Kumar H, Kim BW, Choi DK (2012) The role of bioactive compounds on the promotion of neurite outgrowth. Molecules 17:6728–6753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J, Wu Z, Meng J, Zhu A, Zhong X, Wu S, Nakanishi H (2017) The neuroprotective effects of Brazilian green propolis on neurodegenerative damage in human neuronal SH-SY5Y cells. Oxid Med Cell Longev 2017:7984327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owen SC, Doak AK, Ganesh AN, Nedyalkova L, Mclaughlin CK, Shoichet BK, Shoichet MS (2014) Colloidal drug formulations can explain “bell-shaped” concentration-response curves. ACS Chem Biol 9:777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson H (1993) Neurotrophin production in the brain. Semin Neurosci 5:227–237

    Article  CAS  Google Scholar 

  • Phan CW, Lee GS, Hong SL, Wong YT, Brkljaca R, Urban S, Abd Malek SN, Sabaratnam V (2014) Hericium erinaceus (Bull.: Fr) Pers. cultivated under tropical conditions: isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways. Food Funct 5:3160–3169

    Article  CAS  PubMed  Google Scholar 

  • Rasband WS (1997–2014) ImageJ, U. S. National Institutes of Health. Bethesda, Maryland, USA http://imagej.nih.gov/ij/

  • Ravni A, Bourgault S, Lebon A, Chan P, Galas L, Fournier A, Vaudry H, Gonzalez B, Eiden LE, Vaudry D (2006) The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. J Neurochem 98:321–329

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DM, De Souza MC, Arruda C, Pereira RAS, Bastos JK (2020) The role of Baccharis dracunculifolia and its chemical profile on green propolis production by Apis mellifera. J Chem Ecol 46:150–162

    Article  CAS  PubMed  Google Scholar 

  • Rosoff WJ, Urbach JS, Esrick MA, Mcallister RG, Richards LJ, Goodhill GJ (2004) A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nat Neurosci 7:678–682

    Article  CAS  PubMed  Google Scholar 

  • Rydel RE, Greene LA (1987) Acidic and basic fibroblast growth factors promote stable neurite outgrowth and neuronal differentiation in cultures of PC12 cells. J Neurosci 7:3639–3653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salatino A, Teixeira EW, Negri G, Message D (2005) Origin and chemical variation of Brazilian propolis. Evid Based Complement Alternat Med 2:33–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimazawa M, Chikamatsu S, Morimoto N, Mishima S, Nagai H, Hara H (2005) Neuroprotection by Brazilian green propolis against in vitro and in vivo ischemic neuronal damage. Evid Based Complement Alternat Med 2:201–207

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimoke K, Sasaya H, Ikeuchi T (2011) Analysis of the role of nerve growth factor in promoting cell survival during endoplasmic reticulum stress in PC12 cells. Methods Enzymol 490:53–70

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    Article  CAS  PubMed  Google Scholar 

  • Sullivan AM, O’Keeffe GW (2016) Neurotrophic factor therapy for Parkinson’s disease: past, present and future. Neural Regen Res 11:205–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takashima M, Ichihara K, Hirata Y (2019) Neuroprotective effects of Brazilian green propolis on oxytosis/ferroptosis in mouse hippocampal HT22 cells. Food Chem Toxicol 132:110669

    Article  CAS  PubMed  Google Scholar 

  • Teixeira EW, Negri G, Meira RM, Message D, Salatino A (2005) Plant origin of green propolis: bee behavior, plant anatomy and chemistry. Evid Based Complement Alternat Med 2:85–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace KB, Starkov AA (2000) Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 40:353–388

    Article  CAS  PubMed  Google Scholar 

  • Yosri N, Abd El-Wahed AA, Ghonaim R, Khattab OM, Sabry A, Ibrahim MAA, Moustafa MF, Guo Z, Zou X, Algethami AFM, Masry SHD, Alajmi MF, Afifi HS, Khalifa SAM, El-Seedi HR (2021) Anti-viral and immunomodulatory properties of propolis: chemical diversity, pharmacological properties, preclinical and clinical applications, and in silico potential against SARS-CoV-2. Foods, 10

Download references

Funding

This work received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, process number 2017/04138–8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, code 001), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq grant number 305823/2019–1).

Author information

Authors and Affiliations

Authors

Contributions

ACS, NS, and JB conceived and designed research. LA and GC conducted experiments. RP performed in silico studies. LA and NS analyzed data and wrote the manuscript. All authors read and approved the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Antonio Cardozo dos Santos.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 305 KB)

Supplementary file2 (DOCX 1237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Amaral, L., Caldas, G.R., dos Santos, N.A.G. et al. Baccharin from Brazilian green propolis induces neurotrophic signaling pathways in PC12 cells: potential for axonal and synaptic regeneration. Naunyn-Schmiedeberg's Arch Pharmacol 395, 659–672 (2022). https://doi.org/10.1007/s00210-022-02224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-022-02224-4

Keywords

Navigation