Skip to main content
Log in

Isolation and identification of a bacterial cellulose synthesizing strain from kombucha in different conditions: Gluconacetobacter xylinus ZHCJ618

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A bacterial cellulose (BC) synthesizing strain (Gluconacetobacter xylinus ZHCJ618) was isolated from kombucha and selected as the species for commercial applications owing to its high phenotypic stability and sustainable production capacity of 7.56 ± 0.57 g/L under static culturing conditions and 8.31 ± 0.79 g/L under shaking conditions. The morphological, physiological and biochemical characteristics of the strain were similar to those of Gluconacetobacter genus. The 16S rDNA sequence homologies with G. xylinus NCIB 11664 reached 99%, showing that the isolated strain can be identified as G. xylinus. The material properties of BC were studied by fourier transform infrared spectroscopy, scanning electronic microscopy, X-ray diffraction, thermogravimetric analysis, and tensile test. The results showed that BC synthesized under static conditions exhibited stronger tear strength, higher crystallinity, superior waterhold and rehydration rate than BC synthesized under shaking conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barud HS, Rodrigo TR, Marques FC, Lustri WR, Messaddeq Y, Ribeiro SJL. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes. J. Nanomater. 8: 1–8 (2011)

    Article  CAS  Google Scholar 

  2. Cai ZJ, Yang G. Bacterial cellulose/collagen composite: Characterization and first evaluation of cytocompatibility. J. Appl. Polym. Sci. 120: 2938–2944 (2011)

    Article  CAS  Google Scholar 

  3. Saska S, Teixeir LN, Oliveira PTD, Messaddeq Y. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J. Mater. Chem. 22: 22102–22112 (2012)

    Article  CAS  Google Scholar 

  4. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50: 5438–5466 (2011)

    Article  CAS  Google Scholar 

  5. Gao C, Yan T, Dai K, Wan Y. Immobilization of gelatin onto natural nanofibers for tissue engineering scaffold applications without utilization of any crosslinking agent. Cellulose. 19: 761–768 (2012)

    Article  CAS  Google Scholar 

  6. Liu B, Zhang Z, Huang K. Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose. 20: 2081–2089 (2013)

    Article  CAS  Google Scholar 

  7. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S. Review: Current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45: 1–33 (2010)

    Article  CAS  Google Scholar 

  8. Bungay HR, Serafica. Production of microbial cellulose. U.S. Patent, 6,071,727 (1997)

  9. Xie JJ, Hong F. Recent Progress in fermentation feedstocks of bacterial cellulose. Journal of Cellulose Science and Technology. 19: 68–77 (2011) (in Chinese)

    Google Scholar 

  10. Stapleton PC, Dobson ADW. Carbon repression of cellobiose dehydrogenase production in the white rot fungus trametes versicolor is mediated at the level of gene transcription. FEMS Microbiol. Lett. 221: 167–172 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Serafica G, Mormino R, Bungay H. Inclusion of solid particles in bacterial cellulose. Appl. Microbiol. Biotechnol. 58: 756–760 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Mormino R. Incorporation of common cellulose into bacterial cellulose. Ph. Thesis, Rensselaer Polytechnic Institute, Troy, N. Y.

  13. Shen XK. Review of kombucha research progress. Ind. Sci. Tribune. 11: 104–105 (2012) (in Chinese)

    Google Scholar 

  14. Zhang W, Qi XJ. Studies on the method of collecting the cells Producing Bacterial Cellulose. Food Ind. Sci. Technol. 27: 57–58 (2006) (in Chinese)

    CAS  Google Scholar 

  15. Dong XZ, Cai MY. Manual of Commonly Determinative Bacteriology. Science Press, Beijing, China, pp. 364–390 (2001) (in Chinese)

  16. Zhang LP, Lu HM, Peng XP, Dai R. Study on structure and properties of bacterial cellulose produced by trickling fermentation. Food Ind. Sci. Technol. 33: 197–201 (2012) (in Chinese)

    CAS  Google Scholar 

  17. Nguyen VT, Flanagan B, Mikkelsen D, Ramirez S, Rivas L, Gidley MJ, Dykes GA. Spontaneous mutation result in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Carbohydr. Polym. 80: 337–343 (2010)

    Article  CAS  Google Scholar 

  18. Park JK, Park YH, Jung JY. Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from a rotten apple. Biotechnol. Bioproc. Eng. 8: 83–88 (2003b)

    Article  CAS  Google Scholar 

  19. Aydin YN, Aksoy ND. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A. Appl. Microbiol. Biotechnol. 98: 1065–1075. (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Oikawa T, Morino T, Ameyama M. Production of cellulose from D-arabitol by Acetobacter xylinum KU-1. Biosci. Biotechnol. Biochem. 59:1564–1565 (1995)

    Article  CAS  Google Scholar 

  21. Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour. Technol. 86: 215–219 (2003)

    Article  PubMed  Google Scholar 

  22. Park K, Jung JY, Park YH. Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25: 2055–2059 (2003a)

    Article  CAS  PubMed  Google Scholar 

  23. Czaja W, Romanovicz D, Brown RMJ. Structural investigations of microbial cellulose produced in stationery and agitated culture. Cellulose.11: 403–411 (2004)

    Article  CAS  Google Scholar 

  24. Rajalaxmi D, Marcus F, Arthur JR. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr. Polym. 91: 638–645 (2013)

    Article  CAS  Google Scholar 

  25. Shoda M, Sugano Y. Recent advances in bacterial cellulose production. Biotechnol. Bioproc. Eng. 10: 1–8 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project supported by Science and Technology Plan in Shaanxi Province of China (Program No. 2016NY-156) and Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 15JK1108). Thank professor Peiying-Guo for making improvements to the English language for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, X., Qi, X. et al. Isolation and identification of a bacterial cellulose synthesizing strain from kombucha in different conditions: Gluconacetobacter xylinus ZHCJ618. Food Sci Biotechnol 27, 705–713 (2018). https://doi.org/10.1007/s10068-018-0303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0303-7

Keywords

Navigation