Skip to main content
Log in

Isolation of antifungal activity of Leuconostoc mesenteroides TA from kimchi and characterization of its antifungal compounds

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Strain TA harboring antifungal activity was isolated from kimchi and identified based on Gram-staining, biochemical properties using an API 50 CHL, determination of rRNA gene sequences, and RAPD analysis. The determined gene sequences and RAPD pattern showed 100% homology with those of Leuconostoc mesenteroides ATCC 8293T. However, their properties were slightly different from each other. Especially, TA could not utilize lactose while strain ATCC 8293 could use lactose. Leu. mesenteroides ATCC 8293 showed higher antibacterial activity against Bacillus cereus than Leu. mesenteroides TA, whereas the antifungal activities of these 2 LAB against Aspergillus fumigatus were the same. Leu. mesenteroides TA showed broad antimicrobial activities against Gram-positive and - negative bacteria as well as molds. We determined that the responsible antifungal compounds from Leu. mesenteroides TA are lactic acid, acetic acid and unidentified hydrophobic compound(s). Additionally, synergistic interactions involving acetic acid, lactic acid, phenyllactic acid, and unidentified hydrophobic compound(s) contribute to the overall inhibitory activity of Leu. mesenteroides TA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ryu EH, Yang EJ, Woo ER, Chang HC. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi. Food Microbiol. 41: 19–26 (2014)

    Article  CAS  Google Scholar 

  2. Lavermicocca P, Valerio F, Visconti A. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Appl. Environ. Microb. 69: 634–640 (2003)

    Article  CAS  Google Scholar 

  3. Gould GW. Methods for preservation and extension of shelf life. Int. J. Food Microbiol. 33: 51–64 (1996)

    Article  CAS  Google Scholar 

  4. Schnürer J, Magnusson J. Antifungal lactic acid bacteria as preservatives. Trends Food Sci. Tech. 16: 70–78 (2005)

    Article  Google Scholar 

  5. Hugo CJ, Hugo A. Current trends in natural preservatives for fresh sausage products. Trends Food Sci. Tech. 45: 12–23 (2015)

    Article  CAS  Google Scholar 

  6. De Muynck C, Leroy AI, De Maeseneire S, Arnaut F, Soetaert W, Vandamme EJ. Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiol. Res. 159: 339–346 (2004)

    Article  Google Scholar 

  7. Reis JA, Paula AT, Casarotti SN, Penna ALB. Lactic acid bacteria antimicrobial compounds:Characteristics and applications. Food Eng. Rev. 4: 124–140 (2012)

    Article  CAS  Google Scholar 

  8. Dalié DKD, Deschamps AM, Richard-Forget F. Lactic acid bacteria-Potential for control of mould growth and mycotoxins: A review. Food Contro. 21: 370–380 (2010)

    Article  Google Scholar 

  9. Yang EJ, Chang HC. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food Microbiol. 139: 56–63 (2010)

    Article  CAS  Google Scholar 

  10. Valerio F, Favilla M, De Bellis P, Sisto A, de Candia S, Lavermicocca P. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger, and Endomyces fibuliger contaminating bakery products. Syst. Appl. Microbiol. 32: 438–448 (2009)

    Article  CAS  Google Scholar 

  11. Baek EJ, Kim HJ, Choi HJ, Yoon S, Kim JH. Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. J. Microbiol. 50: 842–848 (2012)

    Article  Google Scholar 

  12. Valerio F, Lavermicocca P, Pascale M, Visconti A. Production of phenyllactic acid by lactic acid bacteria: An approach to the selection of strains contributing to food quality and preservation. FEMS Microbiol. Lett. 233: 289–295 (2004)

    Article  CAS  Google Scholar 

  13. Li L, Shin SY, Lee KW, Han NS. Production of natural antimicrobial compound Dphenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active Dlactate dehydrogenase. Lett. Appl. Microbiol. 59: 404–411 (2014)

    Article  CAS  Google Scholar 

  14. Muhialdin BJ, Hassan Z, Abu Bakar F, Algboory HL, Saari N. Novel antifungal peptide produced by Leuconostoc mesenteroides DU15 effectively inhibits growth of Aspergillus niger. J. Food Sci. 80: 1026–1030 (2015)

    Article  Google Scholar 

  15. Choi H, Kim YW, Hwang I, Kim J, Yoon S. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 134: 2208–2216 (2012)

    Article  CAS  Google Scholar 

  16. El-Shafei K, Hegazy EM, Sadek ZI. Ability of immobilized starter cells and metabolites to suppress the growth rate and aflatoxins production by Aspergillus flavus in butter. J. Am. Sci. 6: 131–138 (2010)

    Google Scholar 

  17. Ghita EI, Girgis ES, El-Fattah AAM, Badran SM. Biopreservative effect of the metabolites of some lactic acid bacteria on cream and low fat butter. Egypt. J. Dairy Sci. 32: 221–236 (2004)

    Google Scholar 

  18. Yang EJ, Chang HC. Antifungal activity of Lactobacillus plantarum isolated from kimchi. Microbiol. Biotechnol. Lett. 36: 276–284 (2008)

    CAS  Google Scholar 

  19. Moschetti G, Blalotta G, Villani F, Coppola S. Specific detection of Leuconostoc mesenteroides subsp. mesenteroides with DNA primers identified by Randomly Amplified Polymorphic DNA analysis. Appl. Environ. Microb. 66: 422–424 (2000)

    Article  CAS  Google Scholar 

  20. Papatsaroucha E, Pavlidou S, Hatzikamari M, Lazaridou A, Torriani S, Gerasopoulos D, Tzanetaki EL. Preservation of pears in water in the presence of Sinapis arvensis seeds: A Greek tradition. Int. J. Food Microbiol. 159: 254–262 (2012)

    Article  CAS  Google Scholar 

  21. Hoover DG, Harlander SK. Screening methods for detecting bacteriocin activity. p p. 23–39. In: B acteriocins of Lactic Acid B acteria. Hoover D G, Steenson LR (eds). Academic Press Inc., Waltham, MA, USA (1993)

    Google Scholar 

  22. Straininfo. Strain Passport ATCC 8293 Leuconostoc mesenteroides subsp. mesenteroides. Available from: http://www.straininfo.net/strains/505624. Accessed Aug. 21, 2008

  23. Chang JY, Lee HJ, Chang HC. Identification of the agent from Lactobacillus plantarum KFRI 464 that enhances bacteriocin production by Leuconostoc citreum GJ7. J. Appl. Microbiol. 103: 2504–2515 (2007)

    Article  CAS  Google Scholar 

  24. Oberg KE, Bernardo MN, Froerer K. Inhibition of common spoilage fungi by lactic acid bacteria. ERG. 2: 56–67 (2007)

    Google Scholar 

  25. Wulijideligen T, Sudan T, Miyamoto T. Screening and identification of lactic acid bacteria from airag for antifungal activity. J. Anim. Vet. Adv. 10: 2751–2757 (2011)

    Google Scholar 

  26. Dieuleveux V, Lemarinier S, Guéguen M. Antimicrobial spectrum and target site of D-3-phenyllactic acid. Int. J. Food Microbiol. 40: 177–183 (1998)

    Article  CAS  Google Scholar 

  27. Svanström Å, Boveri S, Boström E, Melin P. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi. BMC Res. Note. 6: 464–474 (2013)

    Article  Google Scholar 

  28. Belguesmia Y, Rabesona H, Mounier J, Pawtowsky A, Le Blay G, Barbier G, Haertlé Chobert JM. Characterization of antifungal organic acids produced by Lactobacillus harbinensis K.V9.3.1Np immobilized in gellan–xanthan beads during batch fermentation. Food Contro. 36: 205–211 (2014)

    Article  CAS  Google Scholar 

  29. Cortés-Zavaleta O, López-Malo A, Hernández-Mendoza A, García HS. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production. Int. J. Food Microbiol. 173: 30–35 (2014)

    Article  Google Scholar 

  30. Guo J, Brosnan B, Furey A, Arendt E, Murphy P, Coffey A. Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioeng. Bug. 3: 104–113 (2012)

    Google Scholar 

  31. Rodríguez N, Salgado JM, Cortés S, Domínguez JM. Antimicrobial activity of D-3-phenyllactic acid produced by fed-batch process against Salmonella enterica. Food Contro. 25: 274–284 (2012)

    Article  Google Scholar 

  32. Ryan LAM, Zannini E, Dal Bello F, Pawlowska A, Koehler P, Arendt E K. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int. J. Food Microbiol. 146: 276–283 (2011)

    Article  Google Scholar 

  33. Gerez CL, Torino MI, Rollán G, De Valdez GF. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Contro. 20: 144–148 (2009)

    Article  CAS  Google Scholar 

  34. Magnusson J, Ström K, Roos S, Sjögren J, Schnürer J. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol. Lett. 219: 129–135 (2003)

    Article  CAS  Google Scholar 

  35. Ström K, Sjögren J, Broberg A, Schnürer J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phetrans-4-OH-L-Pro) and 3-phenyllactic acid. Appl. Environ. Microb. 68: 4322–4327 (2002)

    Article  Google Scholar 

  36. Zebboudj N, Yezli W, Hamini-Kadar N, Kihal M, Henni JE. Antifungal activity of lactic acid bacteria against Fusarium oxysporumf. sp. albedinis isolated from diseased date palm in South Algeria. Int. J. Biosci. 5: 99–106 (2014)

    Google Scholar 

  37. Voulgari K, Hatzilkamari M, Delepoglou A, Georgakopoulos P, Litopoulou-Tzanetaki E, Tzanetakis N. Antifungal activity of non-starter lactic acid bacteria isolates from dairy products. Food Contro. 21: 136–142 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Choon Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Chang, H.C. Isolation of antifungal activity of Leuconostoc mesenteroides TA from kimchi and characterization of its antifungal compounds. Food Sci Biotechnol 25, 213–219 (2016). https://doi.org/10.1007/s10068-016-0032-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0032-8

Keywords

Navigation