Skip to main content
Log in

Antioxidant and antigenotoxic activities of ethanol extracts from Rhus chinensis Mill leaves

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Ethanol extracts were obtained from Rhus chinensis Mill (RCM) leaves and used for antioxidant and antigenotoxic activity assays. IC50 values in DPPH assays were 15.96, 18.83, 20.43, 27.93, 37.43, 46.21, and 141.84 μg/mL for TPP, IPE, LLE, Vc, CE, BHT, and Trolox. Similar results were obtained using ABTS and FRAP assays. In vivo testing showed strong antioxidant activities that were positively correlated with polyphenol contents. Leaf tissue contained abundant polyphenols, and more than 10 phenolic compounds were detected in extracts. Quantitative results showed that quercetin-3-rhamnoside (26.4±0.76 mg/g of extract) was the most abundant ingredient, followed by hyperoside (15.2±0.42 mg/g of extract), quercetin (1.5±0.07mg/g of extract), and kaempferol (0.48±0.05 mg/g of extract). This study increases the knowledge for possible uses of forest by-products as a substitute for gallnuts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li ZG, Yang WY, Xia JD. Current situation of gallnut research in China. Forest Res. 16: 760–767 (2003)

    Google Scholar 

  2. Ow YY, Stupans I. Gallic acid and gallic acid derivatives: Effects on drug metabolizing enzymes. Curr. Drug Metabol. 4: 241–248 (2003)

    Article  CAS  Google Scholar 

  3. New medical college of Jiangsu. Great Dictionary of Chinese Medicine. Shanghai People’s Publishing House, Shanghai, China. p. 1817 (1997)

    Google Scholar 

  4. Zhao J, Cui CB, Cai B, Yao ZW. Research progress of domestic Rhus genus plants. Pharm. J. Chin. PLA 22: 48–51 (2006)

    Google Scholar 

  5. Hu HB, Zhang JH, Lee HJ, Kim SH, Lü JX. Penta-O-galloyl-beta-d-glucose induces S- and G1-cell cycle arrests in prostate cancer cells targeting DNA replication and cyclin D1. Carcinogenesis 30: 818–823 (2009)

    Article  CAS  Google Scholar 

  6. Hu H, Lee HJ, Jiang C, Zhang J, Wang L, Zhao Y, Xiang Q, Lee EO, Kim SH, Lü J. Penta-1,2,3,4,6-O-galloyl-beta-d-glucose induces p53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol. Cancer Ther. 7: 2681–2691 (2008)

    Article  CAS  Google Scholar 

  7. Yu M, Yang CR, Chen S. The scavenging effect of polyphenols from galla Chinensis on DPPH readied by ESR. Pharm. Biotechnol. 14: 345–347 (2007)

    Google Scholar 

  8. Wang RR, Gu Q, Wang YH, Zhang XM, Yang LM, Zhou J, Chen JJ, Zheng YT. Anti-HIV-1 activities of compounds isolated from the medicinal plant Rhus chinensis. J. Ethnopharmacol. 117: 249–256 (2008)

    Article  CAS  Google Scholar 

  9. Shim TJ, Doo HK, Ahn SY, Kim YS, Seong JK, Park IS, Min BH. Inhibitory effect of aqueous extract from the gall of Rhus Chinensis on alpha-glucosidase activity and postprandial blood glucose. J. Ethnopharmacol. 85: 283–287 (2003)

    Article  Google Scholar 

  10. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic/phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–153 (1965)

    CAS  Google Scholar 

  11. Katalinic V, Mozina SS, Generalic I, Skroza D, Ljubenkov I, Klancnik A. Phenolic profile, antioxidant capacity, and antimicrobial activity of leaf extracts from six Vitis vinifera L. varieties. Int. J. Food Prop. 16: 45–60 (2013)

    Article  CAS  Google Scholar 

  12. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231–1237 (1999)

    Article  CAS  Google Scholar 

  13. Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological uids and modied version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymol. 299: 15–27 (1999)

    Article  CAS  Google Scholar 

  14. Leiers B, Kampkötter A, Grevelding CG, Link CD, Johnson TE, Henkle-Dührsen K. A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radical Bio. Med. 34: 1405–1415 (2003)

    Article  CAS  Google Scholar 

  15. Tang ML, Zhang PP, Xu DJ, Wang L, Wu LJ. SOS induction by vacuum, desiccation, and low-energy ion beam mock-irradiation in bacteria. Ann. Microbiol. 59: 815–821 (2009)

    Article  CAS  Google Scholar 

  16. Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, Wold AB, Haffner K, Baugerod H, Andersen LF, Jacobs DR, Blomhoff R. A systematic screening of total antioxidants in dietary plants. J. Nutr. 132: 461–471 (2002)

    CAS  Google Scholar 

  17. Albayrak S, Aksoy A, Sagdic O, Hamzaoglu E. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chem. 119: 114–122 (2010)

    Article  CAS  Google Scholar 

  18. Lin YM, Anderson H, Flavin MT, Pai YH, Mata-Greenwood E, Pengsuparp T, Pezzuto JM, Schinazi RF, Hughes SH, Chen FC. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J. Nat. Prod. 60: 884–888 (1997)

    Article  CAS  Google Scholar 

  19. Kosar M, Bozan B, Temelli F, Baser KHC. Antioxidant activity and phenolic composition of sumac (Rhus coriaria L.) extracts. Food Chem. 103: 952–959 (2007)

    Article  CAS  Google Scholar 

  20. Sabina S, Park JH, Lee DY, Cho JG, Seo WD, Kang HC, Yoo KH, Chung IS, Jeon YJ, Yeon SW, Baek NI. Cytotoxic and neuroprotective biflavonoids from the fruit of Rhus parviflora. J. Korean Soc. Appl. Bio. Chem. 55: 557–562 (2012)

    Article  Google Scholar 

  21. Shrestha S, Lee DY, Park JH, Cho JG, Lee DS, Li B, Kim YC, Jeon YJ, Yeon SW, Baek NI. Flavonoids from the fruits of Nepalese Sumac (Rhus parviflora) attenuate glutamate-induced neurotoxicity in HT22 cells. Food Sci. Biotechnol. 22: 895–902 (2013)

    Article  CAS  Google Scholar 

  22. Huang DJ, Ou BX and Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841–5186 (2005)

    Article  CAS  Google Scholar 

  23. Rababah TM, Hettiarachchy NS, Horax R. Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotukola, and ginkgo extracts, vitamin E, and tertbutylhydroquinone. J. Agr. Food Chem. 52: 5183–5186 (2004)

    Article  CAS  Google Scholar 

  24. Adnan L, Osman A, Hamid AA. Antioxidant activity of different extracts of red Pitaya (Hylocereus polyrhizus) seed. Int. J. Food Prop. 14: 1171–1181 (2011)

    Article  CAS  Google Scholar 

  25. Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5: 387–398 (2006)

    Article  CAS  Google Scholar 

  26. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247 (2000)

    Article  CAS  Google Scholar 

  27. Bruskov VI, Malakhova LV, Masalimov ZK, Chernikov AV. Heatinduced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Res. 30: 1354–1363 (2002)

    Article  CAS  Google Scholar 

  28. Ye K, Ji CB, Lu XW, Ni YH, Gao CL, Chen XH, Zhao YP, Gu GX, Guo XR. Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress. J. Radiat. Res. 51: 473–479 (2010)

    Article  CAS  Google Scholar 

  29. Tian LM, Shi XL, Yu LH, Zhu J, Ma R, Yang XB. Chemical composition and hepatoprotective effects of polyphenol-rich extract from Houttuynia cordata tea. J. Agr. Food Chem. 60: 4641–4648 (2012)

    Article  CAS  Google Scholar 

  30. Wissem B, Safa D, Ines S, Jihed B, Ines B, Mohamed BS, Soumaya K, Anne MM, Marie GD, Kamel G, Leila CG. Study of genotoxic, antigenotoxic and antioxidant activities of the digallic acid isolated from Pistacia lentiscus fruits. Toxicol. In Vitro 24: 509–515 (2010)

    Article  Google Scholar 

  31. Nuria Elizabeth RG, Annete H, Rubén Francisco GL, Francisco Javier IP, Graciela ZG, José Alberto GI. Antioxidant and antimutagenic activity of phenolic compounds in three different colour groups of common bean cultivars (Phaseolus vulgaris). Food Chem. 103: 521–527 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z., Tang, M., Deng, G. et al. Antioxidant and antigenotoxic activities of ethanol extracts from Rhus chinensis Mill leaves. Food Sci Biotechnol 23, 1213–1221 (2014). https://doi.org/10.1007/s10068-014-0166-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0166-5

Keywords

Navigation