Skip to main content
Log in

Flavonoids from the fruits of Nepalese sumac (Rhus parviflora) attenuate glutamate-induced neurotoxicity in HT22 cells

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Nepalese sumac (Rhus parviflora) is a wild edible fruit used for the treatment of various ailments including neurological complications and stomach disorders in the traditional medicinal system of south Asia (Ayurveda). Four flavonoids were isolated from ethyl acetate (EtOAc) fraction of Nepalese sumac fruits and their chemical structures were determined on the basis of NMR, fast atom bombardment mass spectrometry (FAB/MS), and IR. The efficiency of isolated compounds in attenuating glutamateinduced cell death in an immortalized mouse hippocampal cell line (HT-22) and inhibition of cycline dependent kinase 5 (Cdk5) were investigated. Among the compounds, flavanols, fustin (1) and taxifolin (2), an aurone, aureusidin (3), and a biflavonoid, agathisflavone (4) were found to have protective effect against glutamate induced oxidative injury in HT22 cells. Aureusidin (3), a Cdk5/p25 inhibitor (IC50 3.5 μM), was the most potent neuroprotector with an EC50 value of 11.90 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Press JR, Shrestha KK, Sutton DA. Annotated Checklist of the Flowering Plants of Nepal. The Natural History Museum, London, UK and Central Department of Botany, Kathmandu, Nepal. pp. 9–10 (2000)

    Google Scholar 

  2. Government of India. The Ayurvedic Pharmacopoeia of India, Part I, Volume V. Ministry of Health and Family Welfare, GOI, New Delhi, India. pp. 205–207 (2006)

    Google Scholar 

  3. Talapatra B, Bhaumik A, Talapatra SK. 2-Hydroxy-1,2,3-propanetricarboxylic acid 2-methyl ester, a new natural product from Rhus parviflora: A simple achiral molecule having both enantiotopic and diastereotopic hydrogens. Indian J. Chem. B. 32B: 1292–1294 (1993)

    CAS  Google Scholar 

  4. Talapatra SK, Mandal SK, Bhaumik A, Mukhopadhyay S, Kar P, Patra A, Talapatra B. Echinulin, a novel cyclic dipeptide carrying a triprenylated indole moiety from an anacardiaceae, a cucurbitaceae and two orchidaceae plants: Detailed high resolution 2D-NMR and mass spectral studies. J. Indian Chem. Soc. 78: 773–777 (2001)

    CAS  Google Scholar 

  5. Shrestha S, Park JH, Lee DY, Cho JG, Cho S, Yang HJ, Yong HI, Yoon MS, Han DS, Baek NI. Rhus parviflora and its biflavonoid constituent, rhusflavone, induce sleep through the positive allosteric modulation of GABAA-benzodiazepine receptors. J. Ethnopharmacol. 142: 213–220 (2012)

    Article  CAS  Google Scholar 

  6. Shrestha S. Phytochemical constituents of Desmostachya bipinnata and Rhus parviflora from Nepal. PhD thesis, Kyung Hee University, Seoul, Korea ( 2011)

    Google Scholar 

  7. Fukui M, Song JH, Choi J, Choi HJ, Zhu BT. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 617: 1–11 (2009)

    Article  CAS  Google Scholar 

  8. Kaczmarek L, Kossut M, Skangiel-Kramska J. Glutamate receptors in cortical plasticity: Molecular and cellular biology. Physiol. Rev. 77: 217–255 (1997)

    CAS  Google Scholar 

  9. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63 (1983)

    Article  CAS  Google Scholar 

  10. Jeon YJ, Lee HS, Yeon SW, Ko JH, An KM, Yu SW, Kang JH, Hwang BY, Kim TY. Inhibitory effects of dehydrocostuslactone isolated from Saussureae radix on CDK2 activity. Korean J. Pharmacogn. 36: 97–101 (2005)

    CAS  Google Scholar 

  11. Kim JS, Kwon YS, Chun WJ, Kim TY, Sun J, Yu CY, Kim MJ. Rhus verniciflua Stokes flavonoid extracts have anti-oxidant antimicrobial and a-glucosidase inhibitory effect. Food Chem. 120: 539–543 (2010)

    Article  CAS  Google Scholar 

  12. Nifant’ev EE, Koroteev MP, Kaziev GZ, Uminskii AA, Grachev AA, Men’shov VM, Tsvetkov YE, Nifant’ev NE, Ski VKB, Stash AI. On the problem of identification of dihydroquercetin flavonoid. Russ. J. Gen. Chem+. 76: 161–163 (2006)

    Article  Google Scholar 

  13. Geiger H, Markham KR. Campylopusaurone, an auronoflavanone biflavonoid from the mosses Campylopus clavatus and Campylopus holomitrium. Phytochemistry 31: 4325–4328 (1992)

    Article  CAS  Google Scholar 

  14. Young D. Heartwood flavonoids and the infrageneric relationships of Rhus (Anacardiaceae). Am. J. Bot. 66: 502–510 (1979)

    Article  CAS  Google Scholar 

  15. Chari VM, Ilyas M, Wagner H, Neszmel Y, Chen FC, Chen LK, Lin YC, Lin YM. 13C-NMR spectroscopy of biflavanoids. Phytochemistry 16: 1273–1278 (1977)

    Article  CAS  Google Scholar 

  16. Coyle JT, Puttfarckaen P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695 (1993)

    Article  CAS  Google Scholar 

  17. Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system. Cellular Mol. Life Sci. 57: 1287–1305 (2000)

    Article  CAS  Google Scholar 

  18. Ishige K, Schubert D, Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radical Bio. Med. 30: 433–446 (2001)

    Article  CAS  Google Scholar 

  19. Park BC, Lee YS, Park HJ, Kwak MK, Yoo BK, Kim JY, Kim JA. Protective effects of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-hydroxydopamine-induced neuronal cell death. Exp. Mol. Med. 38: 316–326 (2007)

    Article  Google Scholar 

  20. Cho N, Choi JH, Yang HJ, Jeong EJ, Lee KY, Kim YC, Sung SH. Neuroprotective and anti-inflammatory effects of flavonoids isolated from Rhus verniciflua in neuronal HT22 and microglial BV2 cell lines. Food Chem. Toxicol. 50: 1940–1945 (2012)

    Article  CAS  Google Scholar 

  21. Kang SS, Lee JY, Choi YK, Song SS, Kim JS, Jeon SJ, Han YN, Son KH, Han BH. Neuroprotective effects of naturally occurring biflavonoids. Bioorg. Med. Chem. Lett. 15: 3588–3591 (2005)

    Article  CAS  Google Scholar 

  22. Dajas E, Rivera F, Blasina F, Arredondo F, Echeverry C, Lafon L, Morquio A, Heizen H. Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotox. Res. 5: 425–432 (2003)

    Article  Google Scholar 

  23. Sun KH, de Pablo Y, Vincent F, Shah K. Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J. Neurochem. 107: 265–278 (2008)

    Article  CAS  Google Scholar 

  24. An RB, Jeong GS, Kim YC. Flavonoids from the heartwood of Dalbergia odorifera and their protective effect on glutamateinduced oxidative injury in HT22 cells. Chem. Pharm. Bull. 56: 1722–1724 (2008)

    Article  CAS  Google Scholar 

  25. Kumar KS, Kumaresan R. A quantum chemical study on the antioxidant properties of aureusidin and bracteatin. Int. J. Quantum Chem. 111: 4483–4496 (2011)

    Article  CAS  Google Scholar 

  26. Boumendjel A. Aurones: A subclass of flavones with promising biological potential. Curr. Med. Chem. 10: 2621–2630 (2003)

    Article  CAS  Google Scholar 

  27. Detsi A, Majdalani M, Kontogioris CA, Hadjipavlou-Litina D, Keflas P. Natural and synthetic 2′-hydroxy-chalcones and aurones: Synthesis, characterization, and evaluation of the antioxidant and soyabean lipoxygenase inhibitory activity. Bioorgan. Med. Chem. 17: 8073–8085 (2009)

    Article  CAS  Google Scholar 

  28. Leost M, Schultz C, Link A, Wu YZ, Biernat J, Mandelkow EM, Bibb JA, Snyder GL, Greengard P, Zaharevitz DW, Gussio R, Senderowicz AM, Sausville EA, Kunick C, Meijer L. Paullones are potent inhibitors of glycogen synthase kinase-3β and cyclindependent kinase 5/p25. Eur. J. Biochem. 267: 5983–5994 (2000)

    Article  CAS  Google Scholar 

  29. Meijer L, Borgne A, Mulner O, Chong JPJ, Blow JJ, Inagaki N, Inagaki M, Delcros JG, Moulinoux JP. Biochemical and cellular effects of roscovitine, apotent, and selective inhibitor of the cyclindependent kinases Cdc2, Cdk2, and Cdk5. Eur. J. Biochem. 243: 527–536 (1997)

    Article  CAS  Google Scholar 

  30. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb J, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L. Indirubins inhibit glycogen synthase kinase-3β and Cdk5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. J. Biol. Chem. 276: 251–260 (2001)

    Article  CAS  Google Scholar 

  31. Shrestha S, Park JH, Lee DY, Cho JG, Yoo JS, Yeon S, Kang HC, Baek NI. Constituents of Machilus thunbergii bark and inhibition of cyclin-dependent kinases (Cdks) by procyanidin B2. J. Korean Soc. Appl. Biol. Chem. 54: 998–1003 (2011)

    Article  CAS  Google Scholar 

  32. Camins A, Verdaguer E, Folch J, Canudas, AM, Pallas M. The role of Cdk5/P25 formation/inhibition in neurodegeneration. Drug News Perspect. 19: 453–460 (2006)

    Article  CAS  Google Scholar 

  33. Zhang Z, Zhao R, Tang Y, Wen S, Wang D, Qi J. Fuzhisan, a Chinese herbal medicine, inhibits β-amyloid-induced neurotoxicity and tau phosphorylation through calpain/Cdk5 pathway in cultured cortical neurons. Neurochem. Res. 36: 801–811 (2011)

    Article  CAS  Google Scholar 

  34. Jamsa A, Backstrom A, Gustafsson E, Dehvari N, Hiller G, Cowburn RF, Vasange M. Glutamate treatment and p25 transfection increase Cdk5 mediated tauphosphorylation in SH-SY5Y cells. Biochem. Bioph. Res. Co. 345: 324–331 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-In Baek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrestha, S., Lee, DY., Park, JH. et al. Flavonoids from the fruits of Nepalese sumac (Rhus parviflora) attenuate glutamate-induced neurotoxicity in HT22 cells. Food Sci Biotechnol 22, 895–902 (2013). https://doi.org/10.1007/s10068-013-0161-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0161-2

Keywords

Navigation