Skip to main content
Log in

Infrared drying of button mushroom slices

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of different infrared power levels on the drying kinetics of button mushrooms was investigated. Mushroom slices were dried at infrared power levels of 83, 125, 167, and 209 W. The power level affected the drying and rehydration characteristics of mushroom slices. Drying time was reduced from 300 min to 40 min as the infrared power level increased from 83 to 209W. Mathematical models frequently used to represent drying of agricultural products were fitted to experimental data of mushroom drying. The parabolic model was the best for representation of mushroom drying. Effective moisture diffusivity varied from 3.81×10−10 to 4.20×10−9 m2/s over the infrared power levels used. The activation energy was estimated using a modified Arrhenius-type equation and calculated to be 7.55 kW/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Genccelep H. The effect of using dried mushroom (Agaricus bisporus) on lipid oxidation and color properties of sucuk. J. Food Biochem. 36: 587–594 (2012)

    Article  CAS  Google Scholar 

  2. Giri SK, Prasad S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. J. Food Eng. 78: 512–521 (2007)

    Article  Google Scholar 

  3. Kurozawa LE, Azoubel PM, Murr FEX, Park KJ. Drying kinetic of fresh and osmotically dehydrated mushroom (Agaricus blazei). J. Food Process Eng. 35: 295–313 (2012)

    Article  Google Scholar 

  4. Rhim JW, Lee JH. Drying kinetics of whole and sliced Shiitake mushrooms (Lentinus edodes). Food Sci. Biotechnol. 20: 419–427 (2011)

    Article  CAS  Google Scholar 

  5. Brooks MS, Abou El-Hana NH, Ghaly AE. Effects of tomato geometries and air temperature on the drying behaviour of plum tomato. Am. J. Appl. Sci. 5: 1369–1375 (2008)

    Article  Google Scholar 

  6. Demir K, Sacilik K. Solar drying of Ayas tomato using a natural convection solar tunnel dryer. J. Food Agric. Environ. 8: 7–12 (2010)

    Google Scholar 

  7. Kocabiyik H, Tezer D. Drying of carrot slices using infrared radiation. Int. J. Food Sci. Technol. 44: 953–959 (2009)

    Article  CAS  Google Scholar 

  8. Tuncel NB, Yilmaz N, Kocabiyik H, Oztürk N, Tuncel M. The effects of infrared and hot air drying on some properties of corn (Zea mays). J. Food Agric. Environ. 8: 63–68 (2010)

    CAS  Google Scholar 

  9. Hebbar UH, Ramesh MN. Optimization of processing conditions for infrared drying of cashew kernels with taste. J. Sci. Food Agr. 85: 865–871 (2005)

    Article  CAS  Google Scholar 

  10. Nowak D, Lewicki PP. Infrared drying of apple slices. Innov. Food Sci. Emerg. 5: 353–360 (2004)

    Article  Google Scholar 

  11. Sharma GP, Verma RC, Pathare PB. Thin-layer infrared radiation drying of onion slices. J. Food Eng. 67: 361–366 (2005)

    Article  Google Scholar 

  12. Sun J, Hu X, Zhao G, Wu J, Wang Z, Chen F, Liao X. Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying. Food Sci. Technol. Int. 13: 91–97 (2007)

    Article  Google Scholar 

  13. Ruiz Celma A, Cuadros Blázquez F, López-Rodríuez F. Experimental characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 87: 282–291 (2009)

    Article  Google Scholar 

  14. Corrêa PC, de Oliveira GHH, Baptestini FM, Diniz MDMS, da Paixão AA. Tomato infrared drying: Modeling and some coefficients of the dehydration process. Chilean J. Agr. Res. 72: 262–267 (2012)

    Article  Google Scholar 

  15. Tulek Y. Drying kinetics of Oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. J. Agr. Sci. Technol. 13: 655–664 (2011)

    Google Scholar 

  16. Ghaderi A, Abbasi S, Motevali A, Minaei S. Comparison of mathematical models and artificial neural networks for prediction of drying kinetics of mushroom in microwave-vacuum drier. Chem. Ind. Chem. Eng. Quar. 18: 283–293 (2012)

    Article  Google Scholar 

  17. Kumar A, Singh M, Singh G. Effect of different pretreatments on quality of mushrooms during solar drying. J. Food Sci. Technol. 50: 165–170 (2013)

    Article  Google Scholar 

  18. Doymaz I. Drying of potato slices: Effect of pre-treatments and mathematical modeling. J. Food Process. Pres. 36: 310–319 (2012)

    Article  Google Scholar 

  19. Roberts JS, Kidd DR, Padilla-Zakour O. Drying kinetics of grape seeds. J. Food Eng. 89: 460–465 (2008)

    Article  Google Scholar 

  20. Erbay Z, Icier F. Thin-layer drying behaviours of olive leaves (Olea Europaea L.). J. Food Process Eng. 33: 287–308 (2010)

    Article  Google Scholar 

  21. Wang Z, Sun J, Liao X, Chen F, Zhao G, Wu J, Hu X. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 40: 39–46 (2007)

    Article  CAS  Google Scholar 

  22. Verma LR, Bucklin RA, Endan JB, Wratten FT. Effects of drying air parameters on rice drying models. Trans. ASAE 28: 296–301 (1985)

    Article  Google Scholar 

  23. Sharma GP, Prasad S. Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. J. Food Eng. 65: 609–617 (2004)

    Article  Google Scholar 

  24. Shi Q, Zheng Y, Zhao Y. Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices. Energ. Conv. Manage. 71: 208–216 (2013)

    Article  Google Scholar 

  25. Chen D, Li M, Zhu X. TG-DSC method applied to drying characteristics and heat requirement of cotton stalk during drying. Heat Mass Trans. 48: 2087–2094 (2012)

    Article  Google Scholar 

  26. Crank J. Diffusion in a plane sheet. pp. 43–61. In: The Mathematics of Diffusion. Oxford University Press, London, UK (1975)

    Google Scholar 

  27. Dadali G, Ozbek B. Microwave heat treatment of leek: Drying kinetic and effective moisture diffusivity. Int. J. Food Sci. Technol. 43: 1443–1451 (2008)

    Article  CAS  Google Scholar 

  28. Nasiroglu S, Kocabiyik H. Thin-layer infrared radiation drying of red pepper slices. J. Food Process Eng. 32: 1–16 (2009)

    Article  Google Scholar 

  29. Hiranvarachat B, Devahastin S, Chiewchan N. Effects of acid pretreatments on some physicochemical properties of carrot undergoing hot air drying. Food Bioprod. Process. 89: 116–127 (2011)

    Article  CAS  Google Scholar 

  30. Kingsly RP, Goyal RK, Manikantan MR, Ilyas SM. Effects of pretreatments and drying air temperature on drying behaviour of peach slice. Int. J. Food Sci. Technol. 42: 65–69 (2007)

    Article  CAS  Google Scholar 

  31. Falade KO, Solademi OJ. Modeling of air drying of fresh and blanched sweet potato slices. Int. J. Food Sci. Technol. 45: 278–288 (2010)

    Article  CAS  Google Scholar 

  32. Demirel D, Turhan M. Air-drying behaviour of Dwarf Cavendish and Gros Michel banana slices. J. Food Eng. 59: 1–11 (2003)

    Article  Google Scholar 

  33. Singh B, Panesar PS, Nanda V. Utilization of carrot pomace for the preparation of a value added product. World J. Dairy Food Sci. 1: 22–27 (2006)

    Google Scholar 

  34. Vega-Gálvez A, Miranda M, Díaz LP, Lopez L, Rodriguez K, di Scala K. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour. Technol. 101: 7265–7270 (2010)

    Article  Google Scholar 

  35. Zogzas NP, Maroulis ZB, Marinos-Kouris D. Moisture diffusivity data compilation in foodstuffs. Dry. Technol. 14: 2225–2253 (1996)

    Article  CAS  Google Scholar 

  36. Al-Khuseibi MK, Sablani SS, Perera CO. Comparison of water blanching and high hydrostatic pressure effects on drying kinetics and quality of potato. Dry. Technol. 23: 2449–2461 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Doymaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doymaz, İ. Infrared drying of button mushroom slices. Food Sci Biotechnol 23, 723–729 (2014). https://doi.org/10.1007/s10068-014-0098-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0098-0

Keywords

Navigation