Skip to main content
Log in

TG-DSC method applied to drying characteristics and heat requirement of cotton stalk during drying

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Drying characteristics of cotton stalk were investigated at four temperatures (60, 80, 100 and 120 °C) using a simultaneous thermal analyzer (TG-DSC). Heat requirements of cotton stalk during drying were calculated ranging from 189 to 406 kJ/kg. Consequently, Midilli-Kucuk model showed the best fit to experimental drying data. The values of effective diffusivity ranged from 4.38 × 10−9 to 8.15 × 10−9 m2/s, and the activation energy was calculated to be 11.6 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a, b, k, n :

Drying parameters

k 0 :

Drying constants (1/min)

D eff :

Effective moisture diffusivity (m2/s)

MR exp,i :

Experimental moisture ratio

MR pre,i :

Predicted moisture ratio

M e :

Equilibrium moisture content (kg water/kg wet matter)

M 0 :

Initial moisture content (kg water/kg wet matter)

M :

Moisture content at any time of drying (kg water/kg wet matter)

N :

Number of observations

z :

Constant, positive integer

n :

Number of drying constants

R :

The ideal gas constant (J/mol K)

R 2 :

Determination of coefficient

χ 2 :

Reduced Chi-square

t :

Drying time (s)

T :

Drying temperature (°C)

L :

Half thickness of the sample pan (m)

D 0 :

The pre-exponential factor (m2/s)

E a :

The activation energy for drying (kJ/mol)

References

  1. Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW (2010) Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 330(6008):1222–1227

    Article  Google Scholar 

  2. Chen LJ, Li X, Han LJ (2009) Renewable energy from agro-residues in China: solid biofuels and biomass briquetting technology. Renew Sustain Energy Rev 13(9):2689–2695

    Article  Google Scholar 

  3. Cai JM, Chen SY (2008) Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Dry Technol 26(12):1464–1468

    Article  MathSciNet  Google Scholar 

  4. Zhu Z, Kaliske M (2010) Numerical simulation of coupled heat and mass transfer in wood dried at high temperature. Heat Mass Transf 47(3):351–358

    Article  Google Scholar 

  5. Srikiatden J, Roberts J (2006) Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. J Food Eng 74(1):143–152

    Article  Google Scholar 

  6. Doymaz İ (2010) Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transfer 47(3):277–285

    Article  Google Scholar 

  7. Midilli A, Kucuk H (2003) Mathematical modeling of thin layer drying of pistachio by using solar energy. Energy Convers Manage 44(7):1111–1122

    Article  Google Scholar 

  8. Li Z, Kobayashi N (2005) Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition. Dry Technol 23(6):1331–1342

    Article  Google Scholar 

  9. Doymaz İ, Tugrul N, Pala M (2006) Drying characteristics of dill and parsley leaves. J Food Eng 77(3):559–565

    Article  Google Scholar 

  10. Doymaz İ (2007) Air-drying characteristics of tomatoes. J Food Eng 78(4):1291–1297

    Article  Google Scholar 

  11. Bantle M, Kolsaker K, Eikevik TM (2011) Modification of the Weibull distribution for modeling atmospheric freeze-drying of food. Dry Technol 29(10):1161–1169

    Article  Google Scholar 

  12. Shi JL, Pan ZL, McHugh TH, Wood D, Hirschberg E, Olson D (2008) Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT Food Sci Technol 41(10):1962–1972

    Article  Google Scholar 

  13. Alvarez P, Shene C (1996) Experimental study of the heat and mass transfer during drying in a fluidized bed dryer. Dry Technol 14(3–4):701–718

    Article  Google Scholar 

  14. Yang Y, Zhang P, Zhang W, Tian Y, Zheng Y, Wang L (2010) Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew Sustain Energy Rev 14(9):3050–3058

    Article  Google Scholar 

  15. Chen DY, Zhang D, Zhu XF (2011) Research on drying mechanism of heat and mass transfer of stalk (I)—TG/DSC experimental analysis. Taiyangneng Xuebao/Acta Energiae Solaris Sinica 32(9):1355–1360

    Google Scholar 

  16. Chen DY, Zhang D, Zhu XF (2011) Research on drying mechanism of heat and mass transfer of stalk (II)—kinetics numerical simulation. Taiyangneng Xuebao/Acta Energiae Solaris Sinica 32(10):1517–1522

    Google Scholar 

  17. He F, Yi W, Bai X (2006) Investigation on caloric requirement of biomass pyrolysis using TG–DSC analyzer. Energy Convers Manage 47(15–16):2461–2469

    Article  Google Scholar 

  18. Artiaga R, Naya S, Garcia A, Barbadillo F, Garcia L (2005) Subtracting the water effect from DSC curves by using simultaneous TGA data. Thermochim Acta 428(1–2):137–139

    Article  Google Scholar 

  19. Cai JM, Liu RH (2007) Research on water evaporation in the process of biomass pyrolysis. Energy Fuels 21(6):3695–3697

    Article  MathSciNet  Google Scholar 

  20. Chen DY, Zhu XF (2011) Thermal reaction mechanism of biomass and determination of activation energy I. Drying section. Ranliao Huaxue Xuebao/J Fuel Chem Technol 39(8):580–584

    Google Scholar 

  21. AOAC (1990) Official method of análisis, association of official analytical chemists no. 934.06., 15th edn, Arlington

  22. Cho J, Davis JM, Huber GW (2010) The intrinsic kinetics and heats of reactions for cellulose pyrolysis and char formation. ChemSusChem 3(10):1162–1165

    Article  Google Scholar 

  23. Chen DY, Zhang D, Zhu XF Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J Therm Anal Calorim. doi:10.1007/s10973-011-1790-4

  24. Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin. Energy Fuels 20:388–393

    Article  Google Scholar 

  25. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, London

    Google Scholar 

  26. Vega-Gálvez A, Miranda M, Díaz LP, Lopez L, Rodriguez K, Di Scala K (2010) Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour Technol 101(19):7265–7270

    Article  Google Scholar 

  27. Igathinathane C, Chattopadhyay P (1999) Moisture dusion modelling of drying in parboiled paddy components. Part II: bran and Husk. J Food Eng 41(2):89–101

    Article  Google Scholar 

  28. Srinivasakannan C, Balasubramaniam N (2006) Drying of rubber wood sawdust using tray dryer. Part Sci Technol 24(4):427–439

    Article  Google Scholar 

  29. Tirawanichakul S (2008) Paddy dehydration by adsorption: thermo-physical properties and diffusion model of agriculture residues. Biosystems Eng 99(2):249–255

    Article  Google Scholar 

  30. Thakur AK, Gupta AK (2006) Water absorption characteristics of paddy, brown rice and husk during soaking. J Food Eng 75(2):252–257

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank National Natural Science Foundation of China (50930006, 50876099), National Basic Research Program of China (2007CB210203), and Knowledge Innovative Program of the Chinese Academy of Sciences (KGCX2-YW-306) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifeng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Li, M. & Zhu, X. TG-DSC method applied to drying characteristics and heat requirement of cotton stalk during drying. Heat Mass Transfer 48, 2087–2094 (2012). https://doi.org/10.1007/s00231-012-1050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1050-6

Keywords

Navigation