Skip to main content
Log in

Analysis of phytohormones and phosphate solubilization in Photorhabdus spp.

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria of the genus Photorhabdus are nematodes (Heterorhabditidae) symbiont and highly entomopathogenic in nature. Present study was concerned to investigate the effects of Photorhabdus temperata M1021 and Photorhabdus luminescens TT01 on plant morphology and physiology (‘Dongjin-beyo’ and ‘waitoc’). A significant (p<0.05) increase in the plant growth attributes including total plant length, root length, biomass, and chlorophyll contents were observed after treatment with culture extracts. Moreover indole-3-acetic acid (IAA) production by respective bacteria was confirmed by GCMS analysis. IAA production through tryptophan independent pathway was confirmed in P. temperata M1021 and P. luminescens TT01. Phosphate solubilization capability was also investigated by growing them on pikovskaya (PVK) agar as well as on PVK liquid medium with pH 7 at 28±2°C for 14 days. IAA production and phosphate solubilization capability of these bacteria could be the potential factors for plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhurst RJ. Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J. Gen. Microbiol. 128: 3061–3065 (1982)

    CAS  Google Scholar 

  2. Akhurst RJ. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically asociated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303–309 (1980)

    Google Scholar 

  3. Seo S, Lee S, Hong Y, Kim Y. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microb. 78: 3816–3823 (2012)

    Article  CAS  Google Scholar 

  4. Ljung K, Sandberg G, Moritz T. Methods of plant hormone analysis. Plant Horm. 2: 717–740 (2010)

    Article  Google Scholar 

  5. Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microb. 68: 3795–3801 (2002)

    Article  CAS  Google Scholar 

  6. Prusty R, Grisafi P, Fink GR. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. P. Natl. Acad. Sci. USA 101: 4153–4157 (2004)

    Article  CAS  Google Scholar 

  7. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425–448 (2007)

    Article  CAS  Google Scholar 

  8. Dobbelaere S, Vanderleyden J, Okon Y. Plant growth promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22: 107–149 (2003)

    Article  CAS  Google Scholar 

  9. Bauer WD, Mathesius U. Plant responses to bacterial quorum sensing signals. Curr. Opin. Plant Biol. 7: 429–433 (2004)

    Article  CAS  Google Scholar 

  10. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265–270 (1999)

    Article  CAS  Google Scholar 

  11. Rodríguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319–339 (1999)

    Article  Google Scholar 

  12. Schneider E, Kazakoff C, Wightman F. Gas chromatography mass spectrometry evidence for several endogenous auxins in pea seedling organs. Planta 165: 232–241 (1985)

    Article  CAS  Google Scholar 

  13. Chen KH, Miller AN, Patterson GW, Cohen JD. A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIMMS analysis. Plant Physiol. 86: 822–825 (1988)

    Article  CAS  Google Scholar 

  14. Amirav A, Gordin A, Poliak M, Fialkov AB. Gas chromatography mass spectrometry with supersonic molecular beams. J. Mass Spectrom. 43: 141–163 (2008)

    Article  CAS  Google Scholar 

  15. Ramos C, Matas IM, Bardaji L, Aragón IM, Murillo J. Pseudomonas savastanoi pv. savastanoi: Some like it knot. Mol. Plant Pathol. 13: 998–1009 (2012)

    Article  CAS  Google Scholar 

  16. Woodward AW, Bartel B. Auxin: Regulation, action, and interaction. Ann. Bot.-London 95: 707–735 (2005)

    Article  CAS  Google Scholar 

  17. Koo YJ, Yoon E, Song JT, Seo HS, Kim JH, Lee YW, Lee JS, Cheong JJ, Choi YD. An advanced method for the determination of carboxyl methyl esterase activity using gas chromatography chemical ionization mass spectrometry. J. Chromatogr. 863: 80–87 (2008)

    Article  CAS  Google Scholar 

  18. Cohen JD, Bausher MG, Bialek K, Buta JG, Gocal GFW, Janzen LM, Pharis RP, Reed AN, Slovin JP. comparison of a commercial ELISA assay for indole-3-acetic acid at several stages of purification and analysis by gas chromatography-selected ion monitoring mass spectrometry using a C(6) labeled internal standard. Plant Physiol. 84: 982–986 (1987)

    Article  CAS  Google Scholar 

  19. Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G. A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol. 108: 1043–1047 (1995)

    CAS  Google Scholar 

  20. Wallis FM, Truter SJ. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13: 307–317 (1978)

    Article  Google Scholar 

  21. Patten CL, Blakney AJC, Coulson TJD. Activity, distribution, and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 10: 1–21 (2012)

    Article  Google Scholar 

  22. Idris EE, Iglesias DJ, Talon M, Borriss R. Tryptophan dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by bacillus amyloliquefaciens FZB42. Mol. Plant Microbe. In. 20: 619–626 (2007)

    Article  CAS  Google Scholar 

  23. Müller H, Westendorf C, Leitner E, Chernin L, Riedel K, Schmidt S, Eberl L, Berg G. Quorum sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol. Ecol. 67: 468–478 (2009)

    Article  Google Scholar 

  24. Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant associated bacteria. Crit. Rev. Microbiol. 21: 1–18 (1995)

    Article  Google Scholar 

  25. Ernstsen A, Sandberg G, Crozier A, Wheeler CT. Endogenous indoles and the biosynthesis and metabolism of indole-3-acetic acid in cultures of Rhizobium phaseoli. Planta 171: 422–428 (1987)

    Article  CAS  Google Scholar 

  26. Kittell BL, Helinski DR, Ditta GS. Aromatic aminotransferase activity and indole acetic acid production in Rhizobium meliloti. J. Bacteriol. 171: 5458–5466 (1989)

    CAS  Google Scholar 

  27. Bianco C, Defez R. Improvement of phosphate solubilization and medicago plant yield by an indole-3-acetic acid overproducing strain of Sinorhizobium meliloti. Appl. Environ. Microb. 76: 4626–4632 (2010)

    Article  CAS  Google Scholar 

  28. Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47: 0087–0092 (2003)

    Article  CAS  Google Scholar 

  29. Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83–93 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Ho Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullah, I., Khan, A.R., Park, GS. et al. Analysis of phytohormones and phosphate solubilization in Photorhabdus spp.. Food Sci Biotechnol 22 (Suppl 1), 25–31 (2013). https://doi.org/10.1007/s10068-013-0044-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0044-6

Keywords

Navigation