Skip to main content
Log in

Detection of feline calicivirus as norovirus surrogate in food and water sources using filtration and real-time RT-PCR

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Norovirus (NoV) is a major cause of acute non-bacterial gastroenteritis in all age groups worldwide. To detect NoV from foods, polyethylene glycol (PEG) precipitation or ultracentrifugation methods are generally used with reverse transcription (RT)-PCR. These methods need to use complicated procedures and varied buffers depending on the kinds of food matrices. In this study, we suggested a universal method to recover NoV in food and water samples as a prior step to real-time RT-PCR. As a NoV surrogate model, feline calicivirus (FCV) was used. FCV was artificially inoculated to samples, and then concentrated by the adsorption-elution method using negatively charged membrane filters. The detection limit was 4.3×101 PFU/250 mL for distilled water, 4.3×102 PFU/250 mL for environmental waters, and 4.3×102 PFU/15 g for lettuce and oyster. We were able to identify the possibility of one universal and time-saving method to detect NoV in food and water samples without modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cliver DO. Virus transmission via food. World Health Stat. Q. 50: 90–101 (1997)

    CAS  Google Scholar 

  2. Koopmans M, Bonsdorff CH, Vinje J, Medici D, Monroe S. Foodborne viruses. FEMS Microbiol. Rev. 26: 187–205 (2002)

    CAS  Google Scholar 

  3. Scipioni A, Bourgot I, Mauroy A, Ziant D, Saegerman C, Daube G, Thiry E. Detection and quantification of human and bovine noroviruses by a TaqMan RT-PCR assay with a control for inhibition. Mol. Cell. Probe. 22: 215–222 (2008)

    Article  CAS  Google Scholar 

  4. Bresee JS, Widdowson MA, Monroe SS, Glass RI. Foodborne viral gastroenteritis: Challenges and opportunities. Clin. Infect. Dis. 35: 748–753 (2002)

    Article  Google Scholar 

  5. Di Pasquale S, Paniconi M, Auricchio B, Orefice L, Schultz AC, De Medici D. Comparison of different concentration methods for the detection of hepatitis A virus and calicivirus from bottled natural mineral waters. J. Virol. Methods 165: 57–63 (2010)

    Article  Google Scholar 

  6. Seymour IJ, Appleton H. Foodborne viruses and fresh produce. J. Appl. Microbiol. 91: 759–773 (2001)

    Article  CAS  Google Scholar 

  7. Korea Food & Drug Administration. Present conditions of foodborne viruses. Available from: http://fm.kfda.go.kr/ Accessed August 04, 2010.

  8. Fleet GH, Heiskanen P, Reid I, Buckle KA. Foodborne viral illness — Status in australia. Int. J. Food Microbiol. 59: 127–136 (2000)

    Article  CAS  Google Scholar 

  9. Svensson L. Diagnosis of foodborne viral infections in patients. Int. J. Food Microbiol. 59: 117–126 (2000)

    Article  CAS  Google Scholar 

  10. Cliver DO. Detection and control of foodborne viruses. Trends Food Sci. Tech. 6: 353–358 (1995)

    Article  CAS  Google Scholar 

  11. Koopmans M, Durzer E. Foodborne viruses: An emerging problem. Int. J. Food Microbiol. 90: 23–41 (2004)

    Article  Google Scholar 

  12. Green KY, Ando T, Balayan MS, Berke T, Clarke IN, Estes MK, Matson KO, Nakata S, Neill JD, Studdert MJ, Thiel HJ. Taxonomy of the caliciviruses. J. Infect. Dis. 181: S322–S330 (2000)

    Article  Google Scholar 

  13. Clarke IN, Lambden PR. Organization and expression of calicivirus genes. J. Infect. Dis. 181: S309–S316 (2000)

    Article  CAS  Google Scholar 

  14. Radford AD, Coyne KP, Dawson S, Porter CJ, Gaskell RM. Feline calicivirus. Vet. Res. 38: 319–335 (2007)

    Article  CAS  Google Scholar 

  15. Doultree JC, Druce JD, Birch CJ, Bowden DS, Marshall JA. Inactivation of feline calicivirus, a norwalk virus surrogate. J. Hosp. Infect. 41: 51–57 (1999)

    Article  CAS  Google Scholar 

  16. Tree JA, Adams MR, Lees DN. Disinfection of feline calicivirus (a surrogate for norovirus) in wastewaters. J. Appl. Microbiol. 98: 155–162 (2005)

    Article  CAS  Google Scholar 

  17. Gehrkea C, Steinmanna J, Goroncy-Bermes P. Inactivation of feline calicivirus, a surrogate of norovirus (formerly norwalk-like viruses), by different types of alcohol in vitro and in vivo. J. Hosp. Infect. 56: 49–55 (2004)

    Article  Google Scholar 

  18. Baert L, Uyttendaele M, Debevere J. Evaluation of viral extraction methods on a broad range of ready-to-eat foods with conventional and real-time RT-PCR for norovirus GII detection. Int. J. Food Microbiol. 123: 101–108 (2008)

    Article  CAS  Google Scholar 

  19. Guevremont E, Brassard J, Houde A, Simard C, Trottier YL. Development of an extraction and concentration procedure and comparison of RT-PCR primer systems for the detection of hepatitis A virus and norovirus GII in green onions. J. Virol. Methods 134: 130–135 (2006)

    Article  CAS  Google Scholar 

  20. Schultz AC, Saadbye P, Hoorfar J, Norrung B. Comparison of methods for detection of norovirus in oysters. Int. J. Food Microbiol. 114: 352–356 (2007)

    Article  CAS  Google Scholar 

  21. Katayama H, Shimasaki A, Ohgaki S. Development of a virus concentration method and its application to detection of enterovirus and norwalk virus from coastal seawater. Appl. Environ. Microb. 68: 1033–1039 (2002)

    Article  CAS  Google Scholar 

  22. Bidawid S, Malik N, Adegbunrin O, Sattar SA, Farber JM. A feline kidney cell line-based plaque assay for feline calicivirus, a surrogate for norwalk virus. J. Virol. Methods 107: 163–167 (2003)

    Article  CAS  Google Scholar 

  23. Abd-Eldaim MM, Wilkes RP, Thomas KV, Kennedy MA. Development and validation of a TaqMan real-time reverse transcription-PCR for rapid detection of feline calicivirus. Arch. Virol. 154: 555–560 (2009)

    Article  CAS  Google Scholar 

  24. Haramoto E, Katayama H, Utagawa E, Ohgaki S. Recovery of human norovirus from water by virus concentration methods. J. Virol. Methods 160: 206–209 (2009)

    Article  CAS  Google Scholar 

  25. Leggitt PR, Jaykus LA. Detection methods for human enteric viruses in representative foods. J. Food Protect. 63: 1738–1744 (2000)

    CAS  Google Scholar 

  26. Loisy F, Atmar RL, Guillon P, Le Cann P, Pommepuy M, Le Guyader FS. Real-time RT-PCR for norovirus screening in shellfish. J. Virol. Methods 123: 1–7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Yup Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, MG., Jeong, HM., Ahn, JB. et al. Detection of feline calicivirus as norovirus surrogate in food and water sources using filtration and real-time RT-PCR. Food Sci Biotechnol 20, 1475–1480 (2011). https://doi.org/10.1007/s10068-011-0204-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0204-5

Keywards

Navigation