Skip to main content
Log in

Utilization of waste loquat (Eriobotrya Japonica Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Present study mainly focused on investigating the feasibility of waste loquat kernels as substrate in submerged culture of Sclerotium rolfsii MT-6 for scleroglucan production. Loquat kernel contained high protein (22.5%) and total carbohydrate (71.2%) contents. Dried and powdered kernels were subjected to acid hydrolysis with 2 N HCl. The obtained hydrolysate was used for the preparation of loquat kernel extract (LKE) and detoxified loquat kernel extract (DLKE). S. rolfsii MT-6 was isolated from fermented squash (Cucurbita pepo). Optimal conditions for scleroglucan production were initial pH 5.0, shaking speed 150 rpm, 28°C, and cultivation time of 72 hr. Production media prepared with DLKE or LKE gave maximum biomass concentrations of 17.06 and 16.21 g/L, and maximum scleroglucan concentrations of 12.08 and 10.53 g/L, respectively. DLKE was also favorable substrate for mycelial growth in a uniform pellet form. This is a first report on the application of waste loquat kernels as scleroglucan production substrate and on the use of a local S. rolfsii isolate for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farina JI, Sineriz F, Molina OE, Peratti NI. High scleroglucan production by Sclerotium rolfsii: Influence of media composition. Biotechnol. Lett. 20: 825–831 (1998)

    Article  CAS  Google Scholar 

  2. Wang Y, McNeil B. Scleroglucan. Crit. Rev. Biotechnol. 16: 185–215 (1996)

    Article  Google Scholar 

  3. McNeil B, Harvey LM. Viscous fermentation products. Crit. Rev. Biotechnol. 13: 275–304 (1993)

    Article  CAS  Google Scholar 

  4. Survase SA, Saudagar PS, Bajaj IB, Singhal RS. Scleroglucan: Fermentative production, downstream processing, and applications. Food Technol. Biotech. 45: 107–118 (2007)

    CAS  Google Scholar 

  5. Survase SA, Saudagar PS, Singhal RS. Enhanced production of scleroglucan by Sclerotium rolfsii MTCC 2156 by use of metabolic precursors. Bioresource Technol. 98: 410–415 (2006)

    Article  Google Scholar 

  6. Survase SA, Saudagar PS, Singhal RS. Production of scleroglucan from Sclerotium rolfsii MTCC 2156. Bioresource Technol. 97: 989–993 (2006)

    Article  CAS  Google Scholar 

  7. Survase SA, Saudagar PS, Singhal RS. Use of complex media for the production of scleroglucan by Sclerotium rolfsii MTCC 2156. Bioresource Technol. 98: 1509–1512 (2007)

    Article  CAS  Google Scholar 

  8. Gisbert AD, Romero C, Martinez-Calvo J, Leida C, Llacer G, Badenes ML. Genetic diversity evaluation of a loquat (Eriobotrya japonica (Thunb) Lindl) germplasm collection by SSRs and S-allele fragments. Euphytica 168: 121–134 (2009)

    Article  CAS  Google Scholar 

  9. Martinez-Calvo J, Badenes ML, Llacer G, Bleiholder H, Hack H, Meier U. Phenological growth stages of loquat tree (Eriobotrya japonica (Thunb.) Lindl.). Ann. Appl. Biol. 134: 353–357 (1999)

    Article  Google Scholar 

  10. Sutcu H, Demiral H. Production of granular activated carbons from loquat stones by chemical activation. J. Anal. Appl. Pyrol. 84: 47–52 (2009)

    Article  CAS  Google Scholar 

  11. Ibarz A, Garvin A, Costa J. Flow behaviour of concentrated loquat juice. Ahmentaria 268: 65–68 (1995)

    Google Scholar 

  12. Freihat NM, Al-Ghzawi AA, Zaitoun S, Alqudah A. Fruit set and quality of loquats (Eriobotrya japonica) as effected by pollinations under sub-humid Mediterranean. Sci. Hortic.-Amsterdam 117: 58–62 (2008)

    Article  Google Scholar 

  13. Koba K, Matsuoka A, Osada K, Huang YS. Effect of loquat (Eriobotrya japonica) extracts on LDL oxidation. Food Chem. 104: 308–316 (2007)

    Article  CAS  Google Scholar 

  14. AOAC. Official Methods of Analysis of AOAC Intl. 15th ed. Methods 925.10, 955.04, 920.39, 923.03. Association of Official Analytical Chemists, Arlington, VA, USA (1990)

    Google Scholar 

  15. Hodge JE, Hofreiter BT. Determination of reducing sugars and carbohydrates. Vol. 1, pp. 380–394. In: Methods in Carbohydrate Chemistry. Whistler RL, Wolfrom ML (eds). Academic Press, New York, NY, USA (1962)

    Google Scholar 

  16. Purwadi R, Niklasson C, Taherzadeh MJ. Kinetic study of detoxification of dilute acid hydrolysates by Ca(OH)2. J. Biotechnol. 114: 187–198 (2004)

    Article  CAS  Google Scholar 

  17. Barnett HL, Hunter BB. Illustrated Genera of Imperfect Fungi. Macmillan Publishing Company, New York, NY, USA. p. 218 (1987)

    Google Scholar 

  18. Domsch KH, Gams W, Anderson TH. Compendium of Soil Fungi. Vol. 1. Academic Press, London, England. p. 859 (1980)

    Google Scholar 

  19. Dufosse L, De La Broisse D, Guerard F. Fish protein hydrolysates as nitrogen sources for microbial growth and metabolite production. Recent Res. Dev. Microbiol. 1: 365–381 (1997)

    Google Scholar 

  20. Kurbanoglu EB, Kurbanoglu NI. Utilization as peptone for glycerol production of ram horn waste with a new process. Energ. Convers. Manage. 45: 225–234 (2004)

    Article  CAS  Google Scholar 

  21. Farina JI, Sineriz F, Molina OE, Perotti NI. Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii — Rheological properties, molecular weight, and conformational characteristics. Carbohyd. Polym. 44: 41–50 (2001)

    Article  CAS  Google Scholar 

  22. Wang Y, McNeil B. pH effects on exopolysaccharide and oxalic acid production in cultures of Sclerotium glucanicum. Enzyme Microb. Tech. 17: 124–130 (1995)

    Article  CAS  Google Scholar 

  23. Rapp P. 1,3-β-Glucanase, 1,6-β-glucanase, and β-glucosidase activities of Sclerotium glucanicum: Synthesis and properties. J. Gen. Microbiol. 135: 2847–2858 (1989)

    CAS  Google Scholar 

  24. Van Zyl C, Prior BA, du Preez JC. Production of ethanol from sugarcane bagasse hemicellulose hydrolysate by Pichia stipitis. Appl. Biochem. Biotech. 17: 357–369 (1988)

    Article  Google Scholar 

  25. Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technol. 74: 25–33 (2000)

    Article  CAS  Google Scholar 

  26. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Tech. 24: 151–159 (1999)

    Article  CAS  Google Scholar 

  27. Chandel AK, Kapoor RK, Singh A, Kuhad RC. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technol. 98: 1947–1950 (2008)

    Article  Google Scholar 

  28. Van Sjijdam JC, Kossen NWF, Paul PG. An inoculum technique for the production of fungal pellets. Eur. J. Appl. Microbiol. 10: 211–221 (1980)

    Article  Google Scholar 

  29. Borras E, Blaanquez P, Sarra M, Caminal G, Vicent T. Trametes versicolor pellets production: Low-cost medium and scale-up. Biochem. Eng. J. 42: 61–66 (2008)

    Article  CAS  Google Scholar 

  30. Zhang ZY, Jin B, Kelly JM. Production of lactic acid from renewable materials by Rhizopus fungi. Biochem. Eng. J. 35: 251–263 (2007)

    Article  CAS  Google Scholar 

  31. Tinoi J, Rakariyatham N, Deming RL. Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem. 40: 2551–2557 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Taskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taskin, M., Erdal, S. & Canli, O. Utilization of waste loquat (Eriobotrya Japonica Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii . Food Sci Biotechnol 19, 1069–1075 (2010). https://doi.org/10.1007/s10068-010-0150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0150-7

Keywords

Navigation