Skip to main content

Advertisement

Log in

Biomarkers of joint metabolism and bone mineral density are associated with early knee osteoarthritis in premenopausal females

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

Biomarkers of bone and cartilage metabolism were proposed as early diagnosis indicators for knee osteoarthritis (OA), however, which were influenced by disease stage, age, and menopause state. Accurate diagnosis indicators are eagerly awaited. The current study aims to investigate associations of joint metabolism biomarkers and bone mineral density (BMD) with early knee OA in males and premenopausal females before age 50 years.

Method

A total of 189 patients aged before 50 years with early knee OA and 152 healthy participants were enrolled. Levels of bone biomarkers (PINP, OC, and CTX-I) and cartilage biomarkers (PIIANP, COMP, CTX-II, and MMP-3) were assessed. BMD was measured at the lumbar, femoral neck, and hip. Multivariate regression analyses were performed to evaluate the relationship between biomarkers, BMD, and early knee OA.

Results

Serum COMP, urine CTX-II and BMD at femoral neck and hip were increased in premenopausal patients as compared to control; with serum PINP and OC reduced. Meanwhile, serum COMP, urine CTX-II, and BMD at femoral neck and hip showed positive associations with premenopausal early knee OA, while serum PINP had negative association. However, in male patients, only serum COMP was higher than control, and no association of biomarkers or BMD was found with early knee OA.

Conclusions

The joint metabolism biomarkers and BMD showed multiple associations with early knee OA in premenopausal females, but not in males aged before 50 years. It was suggested that sex differences should be taken into account when evaluating cartilage and bone metabolism in early knee OA.

Key Points

The joint metabolism biomarkers and BMD are associated with early knee OA in premenopausal females, but not in males aged before 50 years.

Sex differences should be taken into account when evaluating cartilage and bone metabolism in early knee OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A et al (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602. https://doi.org/10.1016/s0140-6736(16)31678-6

    Article  Google Scholar 

  2. Liu Q, Wang S, Lin J, Zhang Y (2018) The burden for knee osteoarthritis among Chinese elderly: estimates from a nationally representative study. Osteoarthritis Cartilage 26:1636–1642. https://doi.org/10.1016/j.joca.2018.07.019

    Article  CAS  PubMed  Google Scholar 

  3. Bannuru RR, Osani MC, Vaysbrot EE, Arden NK, Bennell K, Bierma-Zeinstra SMA, Kraus VB, Lohmander LS, Abbott JH, Bhandari M, Blanco FJ, Espinosa R, Haugen IK, Lin J, Mandl LA, Moilanen E, Nakamura N, Snyder-Mackler L, McAlindon TE (2019) OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage 27:1578–1589. https://doi.org/10.1016/j.joca.2019.06.011

    Article  CAS  PubMed  Google Scholar 

  4. Luyten FP, Bierma-Zeinstra S, Dell’Accio F, Kraus VB, Nakata K, Sekiya I, Arden NK, Lohmander LS (2017) Toward classification criteria for early osteoarthritis of the knee. Semin Arthritis Rheum 4:457–463. https://doi.org/10.1016/j.semarthrit.2017.08.006

    Article  Google Scholar 

  5. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707. https://doi.org/10.1002/art.34453

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, Wang SX, Sandell LJ, Hoffmann SC, Hunter DJ (2016) Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis 76:186–195. https://doi.org/10.1136/annrheumdis-2016-209252

    Article  CAS  PubMed  Google Scholar 

  7. Martin-Millan M, Castaneda S (2013) Estrogens, osteoarthritis and inflammation. Joint Bone Spine 80:368–373. https://doi.org/10.1016/j.jbspin.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  8. Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G (2005) A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthritis Cartilage 13:769–781. https://doi.org/10.1016/j.joca.2005.04.014

    Article  PubMed  Google Scholar 

  9. Litwic A, Edwards MH, Dennison EM, Cooper C (2013) Epidemiology and burden of osteoarthritis. Brit Med Bull 105:185–199. https://doi.org/10.1093/bmb/lds038

    Article  PubMed  Google Scholar 

  10. Bay-Jensen AC, Reker D, Kjelgaard-Petersen CF, Mobasheri A, Karsdal MA, Ladel C, Henrotin Y, Thudium CS (2016) Osteoarthritis year in review 2015: soluble biomarkers and the BIPED criteria. Osteoarthritis Cartilage 24:9–20. https://doi.org/10.1016/j.joca.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  11. Kohn MD, Sassoon AA, Fernando ND (2016) Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res 474:1886–1893. https://doi.org/10.1007/s11999-016-4732-4

    Article  PubMed Central  PubMed  Google Scholar 

  12. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)-development of a self-administered outcome measure. J Orthop Sports Phys Ther 28:88–96. https://doi.org/10.2519/jospt.1998.28.2.88

    Article  CAS  PubMed  Google Scholar 

  13. Goldring MB, Goldring SR (2010) Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 1192:230–237. https://doi.org/10.1111/j.1749-6632.2009.05240.x

    Article  CAS  PubMed  Google Scholar 

  14. Lajeunesse D, Reboul P (2003) Subchondral bone in osteoarthritis: a biologic link with articular cartilage leading to abnormal remodeling. Curr Opin Rheumatol 15:628–633. https://doi.org/10.1097/00002281-200309000-00018

    Article  PubMed  Google Scholar 

  15. Felson DT, Hodgson R (2014) Identifying and treating preclinical and early osteoarthritis. Rheum Dis Clin North Am 40:699–700. https://doi.org/10.1016/j.rdc.2014.07.012

    Article  PubMed Central  PubMed  Google Scholar 

  16. Guermazi A, Roemer FW, Hayashi D (2011) Imaging of osteoarthritis: update from a radiological perspective. Curr Opin Rheumatol 23:484–491. https://doi.org/10.1097/BOR.0b013e328349c2d2

    Article  PubMed  Google Scholar 

  17. Schiphof D, Oei EHG, Hofman A, Waarsing JH, Weinans H, Bierma-Zeinstra SMA (2014) Sensitivity and associations with pain and body weight of an MRI definition of knee osteoarthritis compared with radiographic Kellgren and Lawrence criteria: a population-based study in middle-aged females. Osteoarthritis Cartilage 22:440–446. https://doi.org/10.1016/j.joca.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  18. Schiphof D, Boers M, Bierma-Zeinstra SMA (2014) Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis 67:1034–1036. https://doi.org/10.1136/ard.2007.079020

    Article  Google Scholar 

  19. Ding C, Zhang Y, Hunter D (2013) Use of imaging techniques to predict progression in osteoarthritis. Curr Opin Rheumatol 25:127–135. https://doi.org/10.1097/bor.0b013e32835a0fe1

    Article  PubMed  Google Scholar 

  20. Woitge H, Seibel M (2017) Markers of bone and cartilage turnover. Exp Clin Endocrinol Diabetes 125:454–469. https://doi.org/10.1055/s-0043-106438

    Article  CAS  PubMed  Google Scholar 

  21. Arunrukthavon P, Heebthamai D, Benchasiriluck P, Chaluay S, Chotanaphuti T, Khuangsirikul S (2020) Can urinary CTX-II be a biomarker for knee osteoarthritis? Arthroplasty 2:6–12. https://doi.org/10.1186/s42836-020-0024-2

    Article  PubMed Central  PubMed  Google Scholar 

  22. van Spil WE, DeGroot J, Lems WF, Oostveen JCM, Lafeber FPJG (2010) Serum and urinary biochemical markers for knee and hip-osteoarthritis: a systematic review applying the consensus BIPED criteria. Osteoarthritis Cartilage 18:605–612. https://doi.org/10.1016/j.joca.2010.01.012

    Article  PubMed  Google Scholar 

  23. Pengas I, Eldridge S, Assiotis A, McNicholas M, Mendes JE, Laver L (2018) MMP-3 in the peripheral serum as a biomarker of knee osteoarthritis, 40 years after open total knee meniscectomy. J Exp Orthop 5:21. https://doi.org/10.1186/s40634-018-0132-x

    Article  PubMed Central  PubMed  Google Scholar 

  24. Reijman M, Hazes JMW, Bierma-Zeinstra SMA, Koes BW, Christgau S, Christiansen C, Uitterlinden AG, Pols HAP (2004) A new marker for osteoarthritis - cross-sectional and longitudinal approach. Arthritis Rheum 50:2471–2478. https://doi.org/10.1002/art.20332

    Article  CAS  PubMed  Google Scholar 

  25. Valdes AM, Meulenbelt I, Chassaing E, Arden NK, Bierma-Zeinstra S, Hart D, Hofman A, Karsdal M, Kloppenburg M, Kroon HM, Slagboom EP, Spector TD, Uitterlinden AG, van Meurs JB, Bay-Jensen AC (2014) Large scale meta-analysis of urinary C-terminal telopeptide, serum cartilage oligomeric protein and matrix metalloprotease degraded type II collagen and their role in prevalence, incidence and progression of osteoarthritis. Osteoarthritis Cartilage 22:683–689. https://doi.org/10.1016/j.joca.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  26. Garnero P, Sornay-Rendu E, Chapurlat R (2020) The cartilage degradation marker, urinary CTX-II, is associated with the risk of incident total joint replacement in postmenopausal women. A 18 year evaluation of the OFELY prospective cohort. Osteoarthritis Cartilage 28:468–474. https://doi.org/10.1016/j.joca.2019.12.012

    Article  CAS  PubMed  Google Scholar 

  27. Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, Wang SX, Sandell LJ, Hoffmann SC, Hunter DJ (2017) Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis 76:186–195. https://doi.org/10.1136/annrheumdis-2016-209252

    Article  CAS  PubMed  Google Scholar 

  28. Garnero P, Ayral X, Rousseau JC, Christgau S, Sandell LJ, Dougados M, Delmas PD (2002) Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis. Arthritis Rheum 46:2613–2624. https://doi.org/10.1002/art.10576

    Article  CAS  PubMed  Google Scholar 

  29. Sharif M, Kirwan J, Charni N, Sandell LJ, Whittles C, Garnero P (2007) A 5-yr longitudinal study of type IIA collagen synthesis and total type II collagen degradation in patients with knee osteoarthritis–association with disease progression. Rheumatology (Oxford) 46:938–943. https://doi.org/10.1093/rheumatology/kel409

    Article  CAS  Google Scholar 

  30. Van Spil WE, Welsing PM, Bierma-Zeinstra SM, Bijlsma JW, Roorda LD, Cats HA, Lafeber FPJG (2015) The ability of systemic biochemical markers to reflect presence, incidence, and progression of early-stage radiographic knee and hip osteoarthritis: data from CHECK. Osteoarthritis Cartilage 23:1388–1397. https://doi.org/10.1016/j.joca.2015.03.023

    Article  PubMed  Google Scholar 

  31. Castaneda S, Roman-Blas JA, Largo R, Herrero-Beaumont G (2012) Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol 83:315–323. https://doi.org/10.1016/j.bcp.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  32. Geusens PP, van den Bergh JP (2016) Osteoporosis and osteoarthritis: shared mechanisms and epidemiology. Curr Opin Rheumatol 28:97–103. https://doi.org/10.1097/BOR.0000000000000256

    Article  CAS  PubMed  Google Scholar 

  33. Kumm J, Tamm A, Lintrop M, Tamm A (2013) Diagnostic and prognostic value of bone biomarkers in progressive knee osteoarthritis: a 6-year follow-up study in middle-aged subjects. Osteoarthritis Cartilage 21:815–822. https://doi.org/10.1016/j.joca.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  34. Bettica P, Cline G, Hart DJ, Meyer J, Spector TD (2002) Evidence for increased bone resorption in patients with progressive knee osteoarthritis. Longitudinal results from the Chingford study. Arthritis Rheum 46:3178–3184. https://doi.org/10.1002/art.10630

    Article  PubMed  Google Scholar 

  35. Roman-Blas JA, Castaneda S, Largo R, Herrero-Beaumont G (2009) Osteoarthritis associated with estrogen deficiency. Arthritis Res Ther 11:241–254. https://doi.org/10.1186/ar2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Khosla S, Oursler MJ, Monroe DG (2012) Estrogen and the skeleton. Trends Endocrinol Metab 23:576–581. https://doi.org/10.1016/j.tem.2012.03.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Compston JE (2013) Sex steroids and bone. Physiol Rev 81:419–447. https://doi.org/10.1152/physrev.2001.81.1.419

    Article  Google Scholar 

  38. Garnero P, Piperno M, Gineyts E, Christgau S, Delmas PD, Vignon E (2001) Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis 60:619–626. https://doi.org/10.1136/ard.60.6.619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sowers M, Lachance L, Jamadar D, Hochberg MC, Hollis B, Crutchfield M, Jannausch M (1999) The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women. Arthritis Rheum 42:483–489. https://doi.org/10.1002/1529-0131(199904)42:3%3c483::AID-ANR13%3e3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  40. Van Spil WE, Nair SC, Kinds MB, Emans PJ, Hilberdink WK, Welsing PM, Lafeber FPJG (2015) Systemic biochemical markers of joint metabolism and inflammation in relation to radiographic parameters and pain of the knee: data from CHECK, a cohort of early-osteoarthritis subjects. Osteoarthritis Cartilage 1:48–56. https://doi.org/10.1016/j.joca.2014.09.003

    Article  Google Scholar 

  41. Bihlet AR, Byrjalsen I, Bay-Jensen AC, Andersen JR, Christiansen C, Riis BJ, Karsdal MA (2019) Associations between biomarkers of bone and cartilage turnover, gender, pain categories and radiographic severity in knee osteoarthritis. Arthritis Res Ther 21:203–212. https://doi.org/10.1186/s13075-019-1987-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Masud T, Langley S, Wiltshire P, Doyle DV, Spector TD (1993) Effect of spinal osteophytosis on bone-mineral density-measurements in vertebral osteoporosis. Brit Med J 307:172–173. https://doi.org/10.1136/bmj.307.6897.172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wong AKO, Beattie KA, Emond PD, Inglis D, Duryea J, Doan A, Ioannidis G, Webber CE, O’Neill J, de Beer J, Adachi JD, Papaioannou A (2009) Quantitative analysis of subchondral sclerosis of the tibia by bone texture parameters in knee radiographs: site-specific relationships with joint space width. Osteoarthritis Cartilage 17:1453–1460. https://doi.org/10.1016/j.joca.2009.05.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ding C, Cicuttini FM, Jones G (2007) Tibial subchondral bone size and knee cartilage defects: relevance to knee osteoarthritis. Osteoarthritis Cartilage 15:479–486. https://doi.org/10.1016/j.joca.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  45. Hannan MT, Anderson JJ, Zhang Y, Levy D, Felson DT (1993) Bone mineral density and knee osteoarthritis in elderly men and women. The Framingham Study Arthritis Rheum 36:1671–1680. https://doi.org/10.1002/art.1780361205

    Article  CAS  PubMed  Google Scholar 

  46. Hochberg MC, Lethbridge-Cejku M, Tobin JD (2004) Bone mineral density and osteoarthritis: data from the Baltimore longitudinal study of aging. Osteoarthritis Cartilage 12:S45–S48. https://doi.org/10.1016/j.joca.2003.09.008

    Article  PubMed  Google Scholar 

  47. Burr DB, Gallant MA (2012) Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8:665–673. https://doi.org/10.1038/nrrheum.2012.130

    Article  CAS  PubMed  Google Scholar 

  48. Teichtahl AJ, Wang Y, Wluka AE, Strauss BJ, Proietto J, Dixon JB, Jones G, Cicuttini FM (2017) Associations between systemic bone mineral density and early knee cartilage changes in middle-aged adults without clinical knee disease: a prospective cohort study. Arthritis Res Ther 19:98–108. https://doi.org/10.1186/s13075-017-1314-0

    Article  PubMed Central  PubMed  Google Scholar 

  49. Jones G, Ding C, Scott F, Glisson M, Cicuttini F (2004) Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. Osteoarthritis Cartilage 12:169–174. https://doi.org/10.1016/j.joca.2003.08.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank numerous individuals participated in this study.

Funding

This study was supported by the China National Natural Science Foundation (No. 81601877 and No. 81702119), the Shaanxi Province National Natural Science Foundation (No. 2018JQ8031), and grants from the institutional science foundation of the first Affiliated Hospital of Xi'an Jiaotong University (No.2018MS-05). The funders had no role in study design, data collection/analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

1. Conception and design: LH, QW, NH, JZ, XYF, JBM

2. Provision of study materials or patients: ZCL, TMW, XW, YHW, XPL, QW

3. Administrative, technical, or logistic support: JW, YQQ, JL, JRZ, XYF, BMJ

4. Acquisition of data: NH, JZ, PW, JL, JRZ

5. Analysis and interpretation of the data: NH, JZ, PW, XYF

6. Drafting of the article: NH, JZ, PW, LH

7. Critical revision of the article for important intellectual content: All authors

8. Final approval of the article: All authors

All authors take responsibility for the integrity of the work as a whole from inception to finished article.

Corresponding authors

Correspondence to Qiang Wang or Lan He.

Ethics declarations

Disclosure

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, N., Zhang, J., Wang, J. et al. Biomarkers of joint metabolism and bone mineral density are associated with early knee osteoarthritis in premenopausal females. Clin Rheumatol 41, 819–829 (2022). https://doi.org/10.1007/s10067-021-05885-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-021-05885-3

Keywords

Navigation