Skip to main content

Advertisement

Log in

A review of applications of metabolomics in osteoarthritis

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) represents the most prevalent and disabling arthritis worldwide due to its heterogeneous and progressive articular degradation. However, effective and timely diagnosis and fundamental treatment for this disorder are lacking. Metabolomics, a growing field in life science research in recent years, has the potential to detect many metabolites and thus explains the underlying pathophysiological processes. Hence, new specific metabolic markers and related metabolic pathways can be identified for OA. In this review, we aimed to provide an overview of studies related to the metabolomics of OA in animal models and humans to describe the metabolic changes and related pathways for OA. The present metabolomics studies reveal that the pathogenesis of OA may be significantly related to perturbations of amino acid metabolism. These altered amino acids (e.g., branched-chain amino acids, arginine, and alanine), as well as phospholipids, were identified as potential biomarkers to distinguish patients with OA from healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACLT:

anterior cruciate ligament transaction

ARG:

arginase

ATP:

adenosine triphosphate

BCAA:

branched-chain amino acids

GC–MS:

gas chromatography–mass spectrometry

LC–MS:

liquid chromatography–mass spectrometry

LysoPC:

lysophosphatidylcholine

LPA:

lysophosphatidic acid

MD:

meniscal destabilization

mTOR:

mammalian target of rapamycin

NMR:

nuclear magnetic resonance

NO:

nitric oxide

NOS:

NO synthase

OA:

osteoarthritis

OAT:

ornithine aminotransferase

PC:

phosphatidylcholine

PLA2:

phospholipase A2

SF:

synovial fluid

TCA:

tricarboxylic acid

UPLC-MS:

ultra-performance liquid chromatography-tandem mass spectrometry

References

  1. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81(9):646–656

    PubMed  PubMed Central  Google Scholar 

  2. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl AJ, Pelletier JP (2016) Osteoarthritis. Nature reviews Disease primers 2:16072. https://doi.org/10.1038/nrdp.2016.72

    Article  PubMed  Google Scholar 

  3. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64(6):1697–1707. https://doi.org/10.1002/art.34453

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hiligsmann M, Cooper C, Arden N, Boers M, Branco JC, Luisa Brandi M, Bruyère O, Guillemin F, Hochberg MC, Hunter DJ, Kanis JA, Kvien TK, Laslop A, Pelletier JP, Pinto D, Reiter-Niesert S, Rizzoli R, Rovati LC, Severens JL, Silverman S, Tsouderos Y, Tugwell P, Reginster JY (2013) Health economics in the field of osteoarthritis: an expert’s consensus paper from the European Society for Clinical and Economic Aspects of osteoporosis and osteoarthritis (ESCEO). Semin Arthritis Rheum 43(3):303–313. https://doi.org/10.1016/j.semarthrit.2013.07.003

    Article  PubMed  Google Scholar 

  5. Zhai G (2019) Alteration of metabolic pathways in osteoarthritis. Metabolites 9(1). https://doi.org/10.3390/metabo9010011

  6. Nepple JJ, Thomason KM, An TW, Harris-Hayes M, Clohisy JC (2015) What is the utility of biomarkers for assessing the pathophysiology of hip osteoarthritis? A systematic review. Clin Orthop Relat Res 473(5):1683–1701. https://doi.org/10.1007/s11999-015-4148-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Showiheen SAA, Sun AR, Wu X, Crawford R, Xiao Y, Wellard RM, Prasadam I (2019) Application of metabolomics to osteoarthritis: from basic science to the clinical approach. Curr Rheumatol Rep 21(6):26. https://doi.org/10.1007/s11926-019-0827-8

    Article  PubMed  Google Scholar 

  8. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455(7216):1054–1056. https://doi.org/10.1038/4551054a

    Article  CAS  PubMed  Google Scholar 

  9. Priori R, Scrivo R, Brandt J, Valerio M, Casadei L, Valesini G, Manetti C (2013) Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun Rev 12(10):1022–1030. https://doi.org/10.1016/j.autrev.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  10. Cui L, Zheng D, Lee YH, Chan TK, Kumar Y, Ho WE, Chen JZ, Tannenbaum SR, Ong CN (2016) Metabolomics investigation reveals metabolite mediators associated with acute lung injury and repair in a murine model of influenza pneumonia. Sci Rep 6:26076. https://doi.org/10.1038/srep26076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78(13):4430–4442. https://doi.org/10.1021/ac060209g

    Article  CAS  PubMed  Google Scholar 

  12. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. https://doi.org/10.1038/nrm.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta L, Ahmed S, Jain A, Misra R (2018) Emerging role of metabolomics in rheumatology. Int J Rheum Dis 21(8):1468–1477. https://doi.org/10.1111/1756-185x.13353

    Article  PubMed  Google Scholar 

  14. Halama A (2014) Metabolomics in cell culture--a strategy to study crucial metabolic pathways in cancer development and the response to treatment. Arch Biochem Biophys 564:100–109. https://doi.org/10.1016/j.abb.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  15. McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB (2018) Cardiovascular metabolomics. Circ Res 122(9):1238–1258. https://doi.org/10.1161/circresaha.117.311002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tavares G, Venturini G, Padilha K, Zatz R, Pereira AC, Thadhani RI, Rhee EP, Titan SMO (2018) 1,5-Anhydroglucitol predicts CKD progression in macroalbuminuric diabetic kidney disease: results from non-targeted metabolomics. Metabolomics: official Journal of the Metabolomic Society 14(4):39. https://doi.org/10.1007/s11306-018-1337-9

    Article  CAS  Google Scholar 

  17. Weckmann K, Diefenthäler P, Baeken MW, Yusifli K, Turck CW, Asara JM, Behl C, Hajieva P (2018) Metabolomics profiling reveals differential adaptation of major energy metabolism pathways associated with autophagy upon oxygen and glucose reduction. Sci Rep 8(1):2337. https://doi.org/10.1038/s41598-018-19421-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang A, Sun H, Yan G, Wang P, Han Y, Wang X (2014) Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett 345(1):17–20. https://doi.org/10.1016/j.canlet.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  19. Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM (2019) Metabolomics toward personalized medicine. Mass Spectrom Rev 38(3):221–238. https://doi.org/10.1002/mas.21548

    Article  CAS  PubMed  Google Scholar 

  20. Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40. https://doi.org/10.1016/j.copbio.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  21. Heather LC, Wang X, West JA, Griffin JL (2013) A practical guide to metabolomic profiling as a discovery tool for human heart disease. J Mol Cell Cardiol 55:2–11. https://doi.org/10.1016/j.yjmcc.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi T, Yoshihara Y, Yamada H, Fujikawa K (2000) Procollagen IIC-peptide as a marker for assessing mechanical risk factors of knee osteoarthritis: effect of obesity and varus alignment. Ann Rheum Dis 59(12):982–984. https://doi.org/10.1136/ard.59.12.982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26(1):51–78. https://doi.org/10.1002/mas.20108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blair-Levy JM, Watts CE, Fiorentino NM, Dimitriadis EK, Marini JC, Lipsky PE (2008) A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis Rheum 58(4):1096–1106. https://doi.org/10.1002/art.23277

    Article  CAS  PubMed  Google Scholar 

  25. Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL (2012) A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley interdisciplinary reviews Systems biology and medicine 4(1):15–37. https://doi.org/10.1002/wsbm.157

    Article  CAS  PubMed  Google Scholar 

  26. Whitelaw CB, Sheets TP, Lillico SG, Telugu BP (2016) Engineering large animal models of human disease. J Pathol 238(2):247–256. https://doi.org/10.1002/path.4648

    Article  PubMed  Google Scholar 

  27. Carlson AK, Rawle RA, Wallace CW, Brooks EG, Adams E, Greenwood MC, Olmer M, Lotz MK, Bothner B, June RK (2019) Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis. Osteoarthr Cartil 27(8):1174–1184. https://doi.org/10.1016/j.joca.2019.04.007

    Article  CAS  Google Scholar 

  28. Williamson MP, Humm G, Crisp AJ (1989) 1H nuclear magnetic resonance investigation of synovial fluid components in osteoarthritis, rheumatoid arthritis and traumatic effusions. Br J Rheumatol 28(1):23–27. https://doi.org/10.1093/rheumatology/28.1.23

    Article  CAS  PubMed  Google Scholar 

  29. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134(5):714–717. https://doi.org/10.1016/j.cell.2008.08.026

    Article  CAS  PubMed  Google Scholar 

  30. Shet K, Siddiqui SM, Yoshihara H, Kurhanewicz J, Ries M, Li X (2012) High-resolution magic angle spinning NMR spectroscopy of human osteoarthritic cartilage. NMR Biomed 25(4):538–544. https://doi.org/10.1002/nbm.1769

    Article  PubMed  Google Scholar 

  31. Adams SB Jr, Setton LA, Kensicki E, Bolognesi MP, Toth AP, Nettles DL (2012) Global metabolic profiling of human osteoarthritic synovium. Osteoarthr Cartil 20(1):64–67. https://doi.org/10.1016/j.joca.2011.10.010

    Article  Google Scholar 

  32. Yang G, Zhang H, Chen T, Zhu W, Ding S, Xu K, Xu Z, Guo Y, Zhang J (2016) Metabolic analysis of osteoarthritis subchondral bone based on UPLC/Q-TOF-MS. Anal Bioanal Chem 408(16):4275–4286. https://doi.org/10.1007/s00216-016-9524-x

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen LT, Sharma AR, Chakraborty C, Saibaba B, Ahn ME, Lee SS (2017) Review of prospects of biological fluid biomarkers in osteoarthritis. Int J Mol Sci 18(3). https://doi.org/10.3390/ijms18030601

  34. Maher AD, Coles C, White J, Bateman JF, Fuller ES, Burkhardt D, Little CB, Cake M, Read R, McDonagh MB, Rochfort SJ (2012) 1H NMR spectroscopy of serum reveals unique metabolic fingerprints associated with subtypes of surgically induced osteoarthritis in sheep. J Proteome Res 11(8):4261–4268. https://doi.org/10.1021/pr300368h

    Article  CAS  PubMed  Google Scholar 

  35. Costello CA, Hu T, Liu M, Zhang W, Furey A, Fan Z, Rahman P, Randell EW, Zhai G (2019) Metabolomics signature for non-responders to total joint replacement surgery in primary osteoarthritis patients: the Newfoundland Osteoarthritis Study. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. doi:https://doi.org/10.1002/jor.24529

  36. Zhang W, Sun G, Likhodii S, Liu M, Aref-Eshghi E, Harper PE, Martin G, Furey A, Green R, Randell E, Rahman P, Zhai G (2016) Metabolomic analysis of human plasma reveals that arginine is depleted in knee osteoarthritis patients. Osteoarthr Cartil 24(5):827–834. https://doi.org/10.1016/j.joca.2015.12.004

    Article  CAS  Google Scholar 

  37. Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, Illig T, Spector TD (2010) Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis 69(6):1227–1231. https://doi.org/10.1136/ard.2009.120857

    Article  CAS  PubMed  Google Scholar 

  38. Ryan D, Robards K, Prenzler PD, Kendall M (2011) Recent and potential developments in the analysis of urine: a review. Anal Chim Acta 684(1–2):8–20. https://doi.org/10.1016/j.aca.2010.10.035

    Article  CAS  PubMed  Google Scholar 

  39. Loeser RF, Pathmasiri W, Sumner SJ, McRitchie S, Beavers D, Saxena P, Nicklas BJ, Jordan J, Guermazi A, Hunter DJ, Messier SP (2016) Association of urinary metabolites with radiographic progression of knee osteoarthritis in overweight and obese adults: an exploratory study. Osteoarthr Cartil 24(8):1479–1486. https://doi.org/10.1016/j.joca.2016.03.011

    Article  CAS  Google Scholar 

  40. Messier SP, Mihalko SL, Legault C, Miller GD, Nicklas BJ, DeVita P, Beavers DP, Hunter DJ, Lyles MF, Eckstein F, Williamson JD, Carr JJ, Guermazi A, Loeser RF (2013) Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. Jama 310(12):1263–1273. https://doi.org/10.1001/jama.2013.277669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li X, Yang SB, Qiu YP, Zhao T, Chen TL, Su MM, Chu LX, Lv AP, Liu P, Jia W (2010) Urinary metabolomics as a potentially novel diagnostic and stratification tool for knee osteoarthritis. Metabolomics: official journal of the Metabolomic Society 6(1):109–118. https://doi.org/10.1007/s11306-009-0184-0

    Article  CAS  Google Scholar 

  42. Blanco FJ (2014) Osteoarthritis year in review 2014: we need more biochemical biomarkers in qualification phase. Osteoarthr Cartil 22(12):2025–2032. https://doi.org/10.1016/j.joca.2014.09.009

    Article  Google Scholar 

  43. Carlson AK, Rawle RA, Adams E, Greenwood MC, Bothner B, June RK (2018) Application of global metabolomic profiling of synovial fluid for osteoarthritis biomarkers. Biochem Biophys Res Commun 499(2):182–188. https://doi.org/10.1016/j.bbrc.2018.03.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mickiewicz B, Kelly JJ, Ludwig TE, Weljie AM, Wiley JP, Schmidt TA, Vogel HJ (2015) Metabolic analysis of knee synovial fluid as a potential diagnostic approach for osteoarthritis. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 33(11):1631–1638. https://doi.org/10.1002/jor.22949

    Article  Google Scholar 

  45. Mickiewicz B, Heard BJ, Chau JK, Chung M, Hart DA, Shrive NG, Frank CB, Vogel HJ (2015) Metabolic profiling of synovial fluid in a unilateral ovine model of anterior cruciate ligament reconstruction of the knee suggests biomarkers for early osteoarthritis. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 33(1):71–77. https://doi.org/10.1002/jor.22743

    Article  CAS  Google Scholar 

  46. Zhang W, Sun G, Aitken D, Likhodii S, Liu M, Martin G, Furey A, Randell E, Rahman P, Jones G, Zhai G (2016) Lysophosphatidylcholines to phosphatidylcholines ratio predicts advanced knee osteoarthritis. Rheumatology (Oxford, England) 55(9):1566–1574. https://doi.org/10.1093/rheumatology/kew207

    Article  CAS  Google Scholar 

  47. Borel M, Pastoureau P, Papon J, Madelmont JC, Moins N, Maublant J, Miot-Noirault E (2009) Longitudinal profiling of articular cartilage degradation in osteoarthritis by high-resolution magic angle spinning 1H NMR spectroscopy: experimental study in the meniscectomized Guinea pig model. J Proteome Res 8(5):2594–2600. https://doi.org/10.1021/pr8009963

    Article  CAS  PubMed  Google Scholar 

  48. Senol O, Gundogdu G, Gundogdu K, Miloglu FD (2019) Investigation of the relationships between knee osteoarthritis and obesity via untargeted metabolomics analysis. Clin Rheumatol 38(5):1351–1360. https://doi.org/10.1007/s10067-019-04428-1

    Article  PubMed  Google Scholar 

  49. Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C, Egido J, Mas S (2017) High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med 104:165–177. https://doi.org/10.1016/j.freeradbiomed.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  50. Kluzek S, Newton JL, Arden NK (2015) Is osteoarthritis a metabolic disorder? Br Med Bull 115(1):111–121. https://doi.org/10.1093/bmb/ldv028

    Article  CAS  PubMed  Google Scholar 

  51. Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10(12):723–736. https://doi.org/10.1038/nrendo.2014.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bonvini A, Coqueiro AY, Tirapegui J, Calder PC, Rogero MM (2018) Immunomodulatory role of branched-chain amino acids. Nutr Rev 76(11):840–856. https://doi.org/10.1093/nutrit/nuy037

    Article  PubMed  Google Scholar 

  53. Bassit RA, Sawada LA, Bacurau RF, Navarro F, Costa Rosa LF (2000) The effect of BCAA supplementation upon the immune response of triathletes. Med Sci Sports Exerc 32(7):1214–1219. https://doi.org/10.1097/00005768-200007000-00005

    Article  CAS  PubMed  Google Scholar 

  54. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7(1):33–42. https://doi.org/10.1038/nrrheum.2010.196

    Article  CAS  PubMed  Google Scholar 

  55. Morris SM Jr (2006) Arginine: beyond protein. The American Journal of Clinical Nutrition 83(2):508s–512s. https://doi.org/10.1093/ajcn/83.2.508S

    Article  CAS  PubMed  Google Scholar 

  56. Li Y, Xiao W, Luo W, Zeng C, Deng Z, Ren W, Wu G, Lei G (2016) Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids 48(4):907–914. https://doi.org/10.1007/s00726-015-2168-x

    Article  CAS  PubMed  Google Scholar 

  57. Ohnishi A, Osaki T, Matahira Y, Tsuka T, Imagawa T, Okamoto Y, Minami S (2013) Correlation of plasma amino acid concentrations and chondroprotective effects of glucosamine and fish collagen peptide on the development of osteoarthritis. J Vet Med Sci 75(4):497–502. https://doi.org/10.1292/jvms.12-0241

    Article  CAS  PubMed  Google Scholar 

  58. Tootsi K, Vilba K, Märtson A, Kals J, Paapstel K, Zilmer M (2020) Metabolomic signature of amino acids, biogenic amines and lipids in blood serum of patients with severe osteoarthritis. Metabolites 10(8). https://doi.org/10.3390/metabo10080323

  59. Rockel JS, Kapoor M (2018) The metabolome and osteoarthritis: possible contributions to symptoms and pathology. Metabolites 8(4). https://doi.org/10.3390/metabo8040092

  60. Wehling-Henricks M, Jordan MC, Gotoh T, Grody WW, Roos KP, Tidball JG (2010) Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy. PLoS One 5(5):e10763. https://doi.org/10.1371/journal.pone.0010763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abramson SB, Amin AR, Clancy RM, Attur M (2001) The role of nitric oxide in tissue destruction. Best Pract Res Clin Rheumatol 15(5):831–845. https://doi.org/10.1053/berh.2001.0196

    Article  CAS  PubMed  Google Scholar 

  62. Xia W, Szomor Z, Wang Y, Murrell GA (2006) Nitric oxide enhances collagen synthesis in cultured human tendon cells. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 24(2):159–172. https://doi.org/10.1002/jor.20060

    Article  CAS  Google Scholar 

  63. Abramson SB (2008) Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Research & Therapy 10(Suppl 2):S2. https://doi.org/10.1186/ar2463

    Article  CAS  Google Scholar 

  64. Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H, Kaesser U, Lasczkowski G, Rickert M, Schmitz G, Steinmeyer J (2013) A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum 65(9):2323–2333. https://doi.org/10.1002/art.38053

    Article  CAS  PubMed  Google Scholar 

  65. Pousinis P, Gowler PRW, Burston JJ, Ortori CA, Chapman V, Barrett DA (2020) Lipidomic identification of plasma lipids associated with pain behaviour and pathology in a mouse model of osteoarthritis. Metabolomics: official journal of the Metabolomic Society 16(3):32. https://doi.org/10.1007/s11306-020-01652-8

    Article  CAS  Google Scholar 

  66. Murakami M, Nakatani Y, Atsumi GI, Inoue K, Kudo I (2017) Regulatory functions of phospholipase A2. Crit Rev Immunol 37(2–6):121–179. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.20

    Article  Google Scholar 

  67. Chen Y, Crawford RW, Oloyede A (2007) Unsaturated phosphatidylcholines lining on the surface of cartilage and its possible physiological roles. J Orthop Surg Res 2:14. https://doi.org/10.1186/1749-799x-2-14

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277(42):39436–39442. https://doi.org/10.1074/jbc.M205623200

    Article  CAS  PubMed  Google Scholar 

  69. Mabey T, Taleongpong P, Udomsinprasert W, Jirathanathornnukul N, Honsawek S (2015) Plasma and synovial fluid autotaxin correlate with severity in knee osteoarthritis. Clinica chimica acta; international journal of clinical chemistry 444:72–77. https://doi.org/10.1016/j.cca.2015.01.032

    Article  CAS  PubMed  Google Scholar 

  70. Uchida H, Nagai J, Ueda H (2014) Lysophosphatidic acid and its receptors LPA1 and LPA3 mediate paclitaxel-induced neuropathic pain in mice. Mol Pain 10:71. https://doi.org/10.1186/1744-8069-10-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gustin C, Van Steenbrugge M, Raes M (2008) LPA modulates monocyte migration directly and via LPA-stimulated endothelial cells. American journal of physiology Cell physiology 295(4):C905–C914. https://doi.org/10.1152/ajpcell.00544.2007

    Article  CAS  PubMed  Google Scholar 

  72. Zhai G, Randell EW, Rahman P (2018) Metabolomics of osteoarthritis: emerging novel markers and their potential clinical utility. Rheumatology (Oxford, England) 57(12):2087–2095. https://doi.org/10.1093/rheumatology/kex497

    Article  CAS  Google Scholar 

  73. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30(3):279–289. https://doi.org/10.1007/s00726-006-0299-9

    Article  CAS  PubMed  Google Scholar 

  74. Chen R, Han S, Liu X, Wang K, Zhou Y, Yang C, Zhang X (2018) Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis. J Chromatogr B Anal Technol Biomed Life Sci 1085:54–62. https://doi.org/10.1016/j.jchromb.2018.03.047

    Article  CAS  Google Scholar 

  75. Anderson JR, Phelan MM, Foddy L, Clegg PD, Peffers MJ (2020) Ex vivo equine cartilage explant osteoarthritis model: a metabolomics and proteomics study. J Proteome Res 19(9):3652–3667. https://doi.org/10.1021/acs.jproteome.0c00143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jiang H, Liu J, Qin XJ, Chen YY, Gao JR, Meng M, Wang Y, Wang T (2018) Gas chromatography-time of flight/mass spectrometry-based metabonomics of changes in the urinary metabolic profile in osteoarthritic rats. Experimental and therapeutic medicine 15(3):2777–2785. https://doi.org/10.3892/etm.2018.5788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Millward-Sadler SJ, Wright MO, Flatman PW, Salter DM (2004) ATP in the mechanotransduction pathway of normal human chondrocytes. Biorheology 41(3–4):567–575

    CAS  PubMed  Google Scholar 

  78. Quesnele JJ, Laframboise MA, Wong JJ, Kim P, Wells GD (2014) The effects of beta-alanine supplementation on performance: a systematic review of the literature. International journal of sport nutrition and exercise metabolism 24(1):14–27. https://doi.org/10.1123/ijsnem.2013-0007

    Article  CAS  PubMed  Google Scholar 

  79. Ikeda T, Jinno T, Masuda T, Aizawa J, Ninomiya K, Suzuki K, Hirakawa K (2018) Effect of exercise therapy combined with branched-chain amino acid supplementation on muscle strengthening in persons with osteoarthritis. Hong Kong physiotherapy journal: official publication of the Hong Kong Physiotherapy Association Limited = Wu li chih liao 38(1):23–31. https://doi.org/10.1142/s1013702518500038

    Article  Google Scholar 

  80. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR (2005) Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am J Clin Nutr 82(5):1065–1073. https://doi.org/10.1093/ajcn/82.5.1065

    Article  CAS  PubMed  Google Scholar 

  81. Lin CC, Tsai WC, Chen JY, Li YH, Lin LJ, Chen JH (2008) Supplements of L-arginine attenuate the effects of high-fat meal on endothelial function and oxidative stress. Int J Cardiol 127(3):337–341. https://doi.org/10.1016/j.ijcard.2007.06.013

    Article  PubMed  Google Scholar 

  82. Siasos G, Tousoulis D, Vlachopoulos C, Antoniades C, Stefanadi E, Ioakeimidis N, Andreou I, Zisimos K, Papavassiliou AG, Stefanadis C (2008) Short-term treatment with L-arginine prevents the smoking-induced impairment of endothelial function and vascular elastic properties in young individuals. Int J Cardiol 126(3):394–399. https://doi.org/10.1016/j.ijcard.2007.04.057

    Article  PubMed  Google Scholar 

  83. Hristina K, Langerholc T, Trapecar M (2014) Novel metabolic roles of L-arginine in body energy metabolism and possible clinical applications. J Nutr Health Aging 18(2):213–218. https://doi.org/10.1007/s12603-014-0015-5

    Article  CAS  PubMed  Google Scholar 

  84. Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135(4):714–721. https://doi.org/10.1093/jn/135.4.714

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81871848).

Author information

Authors and Affiliations

Authors

Contributions

All authors discuss the concept of the manuscript. JTL wrote the manuscript. GXN conceived the study; ZN, ZPY, and TL prepared some materials. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Guo-Xin Ni.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JT., Zeng, N., Yan, ZP. et al. A review of applications of metabolomics in osteoarthritis. Clin Rheumatol 40, 2569–2579 (2021). https://doi.org/10.1007/s10067-020-05511-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-05511-8

Keywords

Navigation