Skip to main content

Advertisement

Log in

Mannose-binding lectin (MBL) deficiency and tuberculosis infection in patients with ankylosing spondylitis

  • Brief Report
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Ankylosing spondylitis (AS) patients may have higher prevalence of mannose-binding lectin (MBL) deficiency than normal individuals. MBL deficiency may influence susceptibility to infections. The aim of the study was to verify if MBL deficiency in patients with AS predisposes to infections. We studied 60 patients with AS diagnosed according to the Assessment of SpondyloArthritis international Society (ASAS) criteria. These patients had their MBL serum levels determinated. Twenty-five individuals were identified as MBL deficient (serum values 100 ng/mL). These patients were paired with 35 “sufficient” MBL producers (median serum level = 700 ng/mL; range 150–4100 ng/mL) for gender, age, use of medications, and tobacco exposure. Medical records of all patients were retrospectively investigated for the period of 5 years and the rate of infection occurrence was compared in the two groups. AS patients with MBL deficiency had higher number of urinary tract infections (p = 0.03; IRR = 2.33; 95% CI = 0.95–6.04) and tuberculosis (p = 0.008; IRR = 9.8; 95% CI = 1.2–441.6) than controls. Regarding tuberculosis infection, one patient (2.8%) in the MBL-sufficient group and six (24.0%) from the deficient group had this infection. The MBL-sufficient patient and five from the deficient group have had latent infections, detected in the screening tests done previous to anti-TNF drug use. The other, in the deficient group, had lung infection while not on anti-TNF treatment. Another patient, from the deficient group, has had tuberculosis skeletal infection in the past. We found a significant association between MBL deficiency and higher risk of tuberculosis and urinary tract infection in patients with AS. More studies with higher number of patients are needed to confirm this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Errante PR, Perazzio SF, Frazão JB, Da Silva NP, Andrade LEC (2016) Primary immunodeficiency association with systemic lupus erythematosus: review of literature and lessons learned by the rheumatology division of a tertiary university hospital at São Paulo, Brazil. Rev Bras Reumatol 56:58–68. https://doi.org/10.1016/j.rbre.2015.07.006.10

    Article  Google Scholar 

  2. Latiff AHA, Kerr M (2007) The clinical significance of immunoglobulin A deficiency. Ann Clin Biochem 44:131–139. https://doi.org/10.1258/000456307780117993

    Article  PubMed  Google Scholar 

  3. Fahl K, Silva CA, Pastorino AC, Carneiro-Sampaio M, Jacob CMA (2015) Autoimmune diseases and autoantibodies in pediatric patients and their first-degree relatives with immunoglobulin A deficiency. Rev Bras Reumatol 55:197–202. https://doi.org/10.1016/j.rbr.2014.10.003

    Article  PubMed  Google Scholar 

  4. Turner MW (2003) The role of mannose-binding lectin in health and disease. Mol Immunol 40:423–429. https://doi.org/10.1016/S0161-5890(03)00155-X

    Article  CAS  PubMed  Google Scholar 

  5. Heitzeneder S, Seidel M, Förster-Waldl E, Heitger A (2012) Mannan-binding lectin deficiency—good news, bad news, doesn’t matter? Clin Immunol 143:22–38. https://doi.org/10.1016/j.clim.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  6. Monticielo OA, Mucenic T, Xavier RM, Brenol JC, Chies JA (2008) The role of mannose-binding lectin in systemic lupus erythematosus. Clin Rheumatol 27:413–419. https://doi.org/10.1007/s10067-0080838-8

    Article  PubMed  Google Scholar 

  7. Perazzio SF, Silva NP, Carneiro-Sampaio M, Andrade LE (2016) Mild and moderate mannose binding lectin deficiency are associated with systemic lupus erythematosus and lupus nephritis in Brazilian patients. Rev Bras Reumatol 56:220–227. https://doi.org/10.1016/j.rbre.2016.01.002

    Article  Google Scholar 

  8. Zhang C, Zhu J, Li SL, Wang H, Zhu QX (2015) The association of mannose-binding lectin genetic polymorphisms with the risk of rheumatoid arthritis: a meta-analysis. J Recept Signal Transduct Res 35:357–362. https://doi.org/10.3109/10799893.2014.975247

    Article  CAS  PubMed  Google Scholar 

  9. Goeldner I, Skare TL, Utiyama SR, Nisihara RM, Tong H, Messias-Reason IJ (2014) Mannose binding lectin and susceptibility to rheumatoid arthritis in Brazilian patients and their relatives. PLoS One 9:e95519. https://doi.org/10.1371/journal.pone.0095519

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aydin SZ, Atagunduz P, Erer B, Bahadir C, Inanc N, Direskeneli H (2010) Mannose binding lectin levels are not related to radiographic damage in ankylosing spondylitis. Rheumatol Int 30:415–417. https://doi.org/10.1007/s00296-009-1189-8

    Article  CAS  PubMed  Google Scholar 

  11. Im CH, Kim J, Lee YJ, Lee EY, Lee EB, Park KS et al (2012) Mannose-binding lectin 2 gene haplotype analysis in Korean patients with ankylosing spondylitis. Rheumatol Int 32:2251–2255. https://doi.org/10.1007/s00296-011-1939-2

    Article  CAS  PubMed  Google Scholar 

  12. Skare TL, Nisihara R, Cieslinski JZ, Zeni JO, Rasera HN, Messias-Reason I, Utiyama SR (2017) Mannose-binding lectin deficiency in Brazilian patients with spondyloarthritis. Immunol Investig 46:183–189. https://doi.org/10.1080/08820139.2016.1237525

    Article  CAS  Google Scholar 

  13. Zeidler H, Hudson AP (2016) Coinfection of Chlamydiae and other bacteria in reactive arthritis and spondyloarthritis: need for future research. Microorganisms 4. doi:https://doi.org/10.3390/microoganisms4030030

  14. Barrett O, Abramovich E, Dreiher J, Novack V, Abu-Shakra M (2014) Mortality due to sepsis in patients with systemic lupus erythematosus and rheumatoid arthritis. Isr Med Assoc J 16:634–635

    PubMed  Google Scholar 

  15. Sieper J, Rudwaleit M, Baraliakos X, Brandt J, Braun J, Burgos-Vargas R et al (2009) The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68(Suppl 2):ii1–i44. https://doi.org/10.1136/ard.2008.104018

    Article  PubMed  Google Scholar 

  16. Beltrame MH, Boldt AB, Catarino SJ, Mendes HC, Boschmann SE, Goeldner I, Messias-Reason I (2015) MBL-associated serine proteases (MASPs) and infectious diseases. Mol Immunol 67:85–100. https://doi.org/10.1016/j.molimm.2015.03.245

    Article  CAS  PubMed  Google Scholar 

  17. Liu C, He T, Rong Y, Du F, Ma D, Wei Y et al (2016) Association of mannose-binding lectin polymorphisms with tuberculosis susceptibility among Chinese. Sci Rep 6:36488. https://doi.org/10.1038/srep36488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoal-Van Helden EG, Epstein J, Victor TC, Hon D, Lewis LA et al (1999) Mannose binding protein B allele confers protection against tuberculous meningitis. Pediatr Res 45:459–464. https://doi.org/10.1203/00006450-199904010-00002

    Article  CAS  PubMed  Google Scholar 

  19. Soborg C, Madsen HO, Andersen AB, Lillebaek T, Kok-Jensen A, Garred P (2003) Mannose binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 188:777–782. https://doi.org/10.1086/377183

    Article  CAS  PubMed  Google Scholar 

  20. Bellamy R, Ruwende C, McAdam KP, Thursz M, Sumiya M, Summerfield J et al (1998) Mannose binding protein deficiency is not associated with malaria, hepatitis B carriage nor tuberculosis in Africans. QJM 91:13–18. https://doi.org/10.1093/qjmed/91.1.13

    Article  CAS  PubMed  Google Scholar 

  21. Selvaraj P, Narayanan PR, Reetha AM (1999) Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India. Tuber Lung Dis 79:221–227. https://doi.org/10.1054/tuld.1999.0204

    Article  CAS  PubMed  Google Scholar 

  22. Soborg C, Andersen AB, Range N, Malenganisho W, Friis H, Magnussen P et al (2007) Influence of candidate susceptibility genes on tuberculosis in a high endemic region. Mol Immunol 44:2213–2220. https://doi.org/10.1016/j.molimm.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  23. Bartlomiejczyk MA, Swierzko AS, Brzostek A, Dziadek J, Cedzynski M (2014) Interaction of lectin pathway of complement-activating pattern recognition molecules with mycobacteria. Clin Exp Immunol 178:310–319. https://doi.org/10.1111/cei.12416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dobler CC (2016) Biologic agents and tuberculosis. Microbiol Spectr 4(6). doi:https://doi.org/10.1128/microbiolspec.TNMI7-0026-2016

  25. Verschuren JJ, Roos A, Schaapherder AF, Mallat MJ, Daha MR, de Fijter JW, Berger SP (2008) Infectious complications after simultaneous pancreas-kidney transplantation: a role for the lectin pathway of complement activation. Transplantation 85:75–80. https://doi.org/10.1097/01.tp.0000297249.10654.f5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Nisihara.

Ethics declarations

The study was approved by the local Committee of Ethics in Research.

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisihara, R., Skare, T., Maestri, V. et al. Mannose-binding lectin (MBL) deficiency and tuberculosis infection in patients with ankylosing spondylitis. Clin Rheumatol 37, 555–558 (2018). https://doi.org/10.1007/s10067-017-3813-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3813-4

Keywords

Navigation