Skip to main content

Advertisement

Log in

The role of mannose-binding lectin in systemic lupus erythematosus

  • Review Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Susceptibility to systemic lupus erythematosus (SLE) is associated with genetic, hormonal, immunological, and environmental factors. Many genes have been related with the appearance of SLE, including several loci that code different complement components and their receptors. Some genetic deficiencies of complement molecules are strongly associated with SLE, probably because these deficiencies could cause decreased clearance of apoptotic cell material. As a consequence of the apoptotic material accumulation, high levels of autoantigens can be presented inappropriately to the immune system in an inflammatory context, resulting in an imbalance on the mechanisms of immunological tolerance, immune system activation, and autoantibody production. Recent studies proposed a role to the mannose-binding lectin (MBL) in the SLE physiopathogenesis. This protein activates the complement system, and the presence of several polymorphisms at the promoter and coding regions of the MBL-2 gene determines alterations at the plasma levels of MBL. Some of these polymorphisms have been associated with SLE susceptibility, as well as with clinical and laboratory typical features of this disease, cardiovascular events, and infections. Besides, it has been described that the presence of anti-MBL autoantibodies in sera of SLE patients can influence MBL plasma levels and its functional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Walport MJ (1993) The Roche Rheumatology Prize Lecture. Complement deficiency and disease. Br J Rheumatol 32(4):269–273

    Article  PubMed  CAS  Google Scholar 

  2. Block SR et al (1975) Proceedings: twin studies in systemic lupus erythematosus (SLE). Arthritis Rheum 18(3):285

    PubMed  CAS  Google Scholar 

  3. Deapen D et al (1992) A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 35(3):311–318

    Article  PubMed  CAS  Google Scholar 

  4. Arnett FC et al (1984) Systemic lupus erythematosus: current state of the genetic hypothesis. Semin Arthritis Rheum 14(1):24–35

    Article  PubMed  CAS  Google Scholar 

  5. Murashima A et al (2004) Long term prognosis of children born to lupus patients. Ann Rheum Dis 63(1):50–53

    Article  PubMed  CAS  Google Scholar 

  6. Croker JA, Kimberly RP (2005) Genetics of susceptibility and severity in systemic lupus erythematosus. Curr Opin Rheumatol 17(5):529–537

    Article  PubMed  CAS  Google Scholar 

  7. Fraser PA et al (2003) Glutathione S-transferase M null homozygosity and risk of systemic lupus erythematosus associated with sun exposure: a possible gene–environment interaction for autoimmunity. J Rheumatol 30(2):276–282

    PubMed  CAS  Google Scholar 

  8. Morel J et al (2003) Polymorphism of HLA-DMA and DMB alleles in patients with systemic lupus erythematosus. J Rheumatol 30(7):1485–1490

    PubMed  CAS  Google Scholar 

  9. Tsao BP (2004) Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 16(5):513–521

    Article  PubMed  CAS  Google Scholar 

  10. Fairhurst AM, Wandstrat AE, Wakeland EK (2006) Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv Immunol 92:1–69

    Article  PubMed  CAS  Google Scholar 

  11. Theofilopoulos AN (1995) The basis of autoimmunity. Part II. Genetic predisposition. Immunol Today 16(3):150–159

    Article  PubMed  CAS  Google Scholar 

  12. Pugh-Bernard AE, Cambier JC (2006) B cell receptor signaling in human systemic lupus erythematosus. Curr Opin Rheumatol 18(5):451–455

    Article  PubMed  CAS  Google Scholar 

  13. Tsokos GC et al (2000) Immune cell signaling in lupus. Curr Opin Rheumatol 12(5):355–363

    Article  PubMed  CAS  Google Scholar 

  14. Dommett RM, Klein N, Turner MW (2006) Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens 68(3):193–209

    Article  PubMed  CAS  Google Scholar 

  15. Madsen HO et al (1994) A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 40(1):37–44

    Article  PubMed  CAS  Google Scholar 

  16. Sastry K et al (1989) The human mannose-binding protein gene. Exon structure reveals its evolutionary relationship to a human pulmonary surfactant gene and localization to chromosome 10. J Exp Med 170(4):1175–1189

    Article  PubMed  CAS  Google Scholar 

  17. Taylor ME et al (1989) Structure and evolutionary origin of the gene encoding a human serum mannose-binding protein. Biochem J 262(3):763–771

    PubMed  CAS  Google Scholar 

  18. Garred P et al (2003) Mannose-binding lectin deficiency—revisited. Mol Immunol 40(2–4):73–84

    Article  PubMed  CAS  Google Scholar 

  19. Lipscombe RJ et al (1992) High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum Mol Genet 1992 1(9):709–715

    Article  CAS  Google Scholar 

  20. Sumiya M et al (1991) Molecular basis of opsonic defect in immunodeficient children. Lancet 337(8757):1569–1570

    Article  PubMed  CAS  Google Scholar 

  21. Lipscombe RJ et al (1996) Mutations in the human mannose-binding protein gene: frequencies in several population groups. Eur J Hum Genet 4(1):13–19

    PubMed  CAS  Google Scholar 

  22. Madsen HO et al (1995) Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 155(6):3013–3020

    PubMed  CAS  Google Scholar 

  23. Madsen HO et al (1998) Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol 161(6):3169–3175

    PubMed  CAS  Google Scholar 

  24. Neonato MG et al (1999) Genetic polymorphism of the mannose-binding protein gene in children with sickle cell disease: identification of three new variant alleles and relationship to infections. Eur J Hum Genet 7(6):679–686

    Article  PubMed  CAS  Google Scholar 

  25. Davies EJ et al (1995) Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum 38(1):110–114

    Article  PubMed  CAS  Google Scholar 

  26. Davies EJ et al (1998) Mannose-binding protein gene polymorphism in South African systemic lupus erythematosus. Br J Rheumatol 37(4):465–466

    Article  PubMed  CAS  Google Scholar 

  27. Lau YL et al (1996) Mannose-binding protein in Chinese patients with systemic lupus erythematosus. Arthritis Rheum 39(4):706–708

    Article  PubMed  CAS  Google Scholar 

  28. Garcia-Laorden MI et al (2003) Mannose binding lectin polymorphisms as a disease-modulating factor in women with systemic lupus erythematosus from Canary Islands, Spain. J Rheumatol 30(4):740–746

    PubMed  CAS  Google Scholar 

  29. Garred P et al (1999) Mannose-binding lectin polymorphisms and susceptibility to infection in systemic lupus erythematosus. Arthritis Rheum 42(10):2145–2152

    Article  PubMed  CAS  Google Scholar 

  30. Horiuchi T et al (2000) Mannose binding lectin (MBL) gene mutation is not a risk factor for systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) in Japanese. Genes Immun 1(7):464–466

    Article  PubMed  CAS  Google Scholar 

  31. Sullivan KE et al (1996) Mannose-binding protein genetic polymorphisms in black patients with systemic lupus erythematosus. Arthritis Rheum 39(12):2046–2051

    Article  PubMed  CAS  Google Scholar 

  32. Sullivan KE et al (2003) Analysis of polymorphisms affecting immune complex handling in systemic lupus erythematosus. Rheumatology (Oxford) 42(3):446–452

    Article  CAS  Google Scholar 

  33. Villarreal J et al (2001) Mannose binding lectin and FcgammaRIIa (CD32) polymorphism in Spanish systemic lupus erythematosus patients. Rheumatology (Oxford) 40(9):1009–1012

    Article  CAS  Google Scholar 

  34. Carthy D et al (1997) Mannose-binding lectin gene polymorphism in Greek systemic lupus erythematosus patients. Br J Rheumatol 36(11):1238–1239

    Article  PubMed  CAS  Google Scholar 

  35. Huang YF et al (2003) Increased frequency of the mannose-binding lectin LX haplotype in Chinese systemic lupus erythematosus patients. Eur J Immunogenet 30(2):121–124

    Article  PubMed  CAS  Google Scholar 

  36. Ip WK et al (1998) Association of systemic lupus erythematosus with promoter polymorphisms of the mannose-binding lectin gene. Arthritis Rheum 41(9):1663–1668

    PubMed  CAS  Google Scholar 

  37. Tsutsumi A et al (2001) Mannose-binding lectin gene: polymorphisms in Japanese patients with systemic lupus erythematosus, rheumatoid arthritis and Sjogren’s syndrome. Genes Immun 2(2):99–104

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi R et al (2005) Association of mannose binding lectin (MBL) gene polymorphism and serum MBL concentration with characteristics and progression of systemic lupus erythematosus. Ann Rheum Dis 64(2):311–314

    Article  PubMed  CAS  Google Scholar 

  39. Navarra SV et al (2007) Increased frequency of mannose-binding lectin promoter LX haplotype among Filipinos with systemic lupus erythematosus. Lupus 16(2):147–148

    Article  PubMed  CAS  Google Scholar 

  40. Chies JA (2007) Letter to the editor: on the haplotypic frequencies of the MBL2 gene among human populations. Lupus 16(10):838

    Article  PubMed  CAS  Google Scholar 

  41. Lee YH et al (2005) The mannose-binding lectin gene polymorphisms and systemic lupus erythematosus: two case–control studies and a meta-analysis. Arthritis Rheum 52(12):3966–3974

    Article  PubMed  CAS  Google Scholar 

  42. Font J et al (2006) Association of mannose-binding lectin gene polymorphisms with antiphospholipid syndrome, cardiovascular disease and chronic damage in patients with systemic lupus erythematosus. Rheumatology 46:76–80

    Article  PubMed  Google Scholar 

  43. Ohlenschlaeger T et al (2004) Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N Engl J Med 351(3):260–267

    Article  PubMed  CAS  Google Scholar 

  44. Calvo-Alen J et al (2006) Systemic lupus erythematosus in a multiethnic US cohort: XXXIV. Deficient mannose-binding lectin exon 1 polymorphisms are associated with cerebrovascular but not with other arterial thrombotic events. Arthritis Rheum 54(6):1940–1945

    Article  PubMed  Google Scholar 

  45. Bertoli AM et al (2006) Systemic lupus erythematosus in a multiethnic US cohort: XXXVI. Influence of mannose-binding lectin exon 1 polymorphisms in disease manifestations, course, and outcome. Arthritis Rheum 54(5):1703–1704

    Article  PubMed  CAS  Google Scholar 

  46. Piao W et al (2007) Mannose-binding lectin is a disease-modifying factor in North American patients with systemic lupus erythematosus. J Rheumatol 34(7):1506–1513

    PubMed  CAS  Google Scholar 

  47. Mok MY et al (2007) Mannose-binding lectin and susceptibility to infection in Chinese patients with systemic lupus erythematosus. J Rheumatol 34(6):1270–1276

    PubMed  CAS  Google Scholar 

  48. Bultink IE et al (2006) Deficiency of functional mannose-binding lectin is not associated with infections in patients with systemic lupus erythematosus. Arthritis Res Ther 8(6):R183

    Article  PubMed  Google Scholar 

  49. Seelen MA et al (2003) Autoantibodies against mannose-binding lectin in systemic lupus erythematosus. Clin Exp Immunol 134(2):335–343

    Article  PubMed  CAS  Google Scholar 

  50. Takahashi R et al (2004) Anti-mannose binding lectin antibodies in sera of Japanese patients with systemic lupus erythematosus. Clin Exp Immunol 136(3):585–590

    Article  PubMed  CAS  Google Scholar 

  51. Mok MY et al (2004) Antibodies to mannose binding lectin in patients with systemic lupus erythematosus. Lupus 13(7):522–528

    Article  PubMed  CAS  Google Scholar 

  52. Shoenfeld Y et al (2007) Autoantibodies against protective molecules-C1q, C-reactive protein, serum amyloid P, mannose-binding lectin, and apolipoprotein A1: prevalence in systemic lupus erythematosus. Ann N Y Acad Sci 1108:227–239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odirlei André Monticielo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monticielo, O.A., Mucenic, T., Xavier, R.M. et al. The role of mannose-binding lectin in systemic lupus erythematosus. Clin Rheumatol 27, 413–419 (2008). https://doi.org/10.1007/s10067-008-0838-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-008-0838-8

Keywords

Navigation