Skip to main content

Advertisement

Log in

Investigation of engineering properties for usability of Lefke stone (Osmaneli/Bilecik) as building stone

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Lefke stone is a sandstone that has been widely used in mosques, madrasas, churches, and houses as building stone. The geological features and engineering properties of Lefke stone outcropped in the southern part of Osmaneli/Bilecik were investigated in field and laboratory studies. Samples acquired during the fieldwork were tested to determine the physical, mechanical, durability, and hygrothermal properties in the laboratory. The mean physico-mechanical properties of Lefke stone yielded apparent density of 2.38 g/cm3, specific gravity of 2.68 g/cm3, total porosity of 11.26%, 2.93% water absorption by weight, uniaxial compressive strength of 94 MPa, flexure strength of 11.45 MPa, a 3.90 MPa point load strength, 4.5–5 Mohs hardness, and field Schmidt hammer rebound value of 36. According to durability tests, Lefke stone is resistant to CaCl2 salt mist but has low resistance to SO2 aging. Salt crystals placed in the discontinuities of the rock caused slight crack growth. The stone’s resistance to crystallization of sodium sulphate salt is low, and an increase in the volume of salts crystallized in the rock results in low corner strengths. A capillary water-absorption value of 0.0016 kg/m2.h places Lefke stone into the category of very low water absorption capacity and permeability. The water vapor diffusion resistance factor (μ) less than 1 indicates that the sandstone has high breathability. Its performance in historical buildings, field observations, and values obtained through laboratory tests confirm that Lefke sandstone can be used as a building stone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anon (1979) Classification of rocks and soils for engineering geological mapping part I: rock and soil materials. Bull Int Assoc Eng Geol 19:364–371. https://doi.org/10.1007/BF02600503

    Article  Google Scholar 

  • ASTM C616/C616M (2015) Standard specification for quartz-based dimension stone. American Standards for Testing Materials. ASTM International, 2p

  • ASTM D5550-06 (2006) Standard test method for specific gravity of soil solids by gas pycnometer. ASTM International, p 5p

  • ASTM D5731-16 (2016) Standard test method for determination of the point load strength index of rock and application to rock strength classifications. ASTM International, p 11p

  • ASTM D5873-14 (2014) Standard test method for determination of rock hardness by rebound hammer method. ASTM International, 6p

  • Bieniawski ZT (1975) The point-load test in geotechnical practice. Eng Geol 9(1):1–11. https://doi.org/10.1016/0013-7952(75)90024-1

    Article  Google Scholar 

  • Çelik MY (2003) Types and usage areas of the decorative natural building stones. Sci Min J 42(1):3–15

  • Çobanoğlu I, Çelik SB (2017) Assessments on the usability of wide wheel (capon) test as reference abrasion test method for building stones. Constr Build Mater 151:319–330. https://doi.org/10.1016/j.conbuildmat.2017.06.045

    Article  Google Scholar 

  • Cooper B, Kramer S (2014) Sydney sandstone: heritage stone from Australia. EGU general assembly conference abstracts, 16:16465

  • Crocq CS (2010) Building stone in Alberta; energy resources conservation board. ERCB/AGS open file report, Canada, 52p

  • De Beer JH (1968) Subjective classification of the hardness of rocks and the associated shear strength. Proceedings of the fourth regional conference for Africa, introducer, Cape Town, South Africa, vol 2, pp 396–398

  • Deer DU, Miller RP (1966) Engineering classifications and index properties of intact rock. Technical Report No: AFWL-TR 65-116. University of Illinois, USA, 300p

  • Dott RH (1964) Wacke, graywacke and matrix; what approach to immature sandstone classification? J Sediment Res 34(3):625–632. https://doi.org/10.1306/74D71109-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Duggal, S.K. (2008), Building materials (3rd Revised Ed). New Age International Publishers, New-Delhi, p 521

  • Duru M, Gedik I, Aksay A (2002) 1: 100 000 scale geological map of Turkey, no: 37, H-24 Adapazarı sheet. The Mineral Research and Exploration Institute of Turkey, Ankara

    Google Scholar 

  • Erdem PN (1981) Engineering geology. İDMM Academy Publications, Istanbul

    Google Scholar 

  • Fort R, Alvarez de Buergo M, Perez-Monserrat EM, Gomez-Heras M, Varas-Muriel MJ, Freire DM (2013) Evolution in the use of natural building stone in Madrid, Spain. Q J Eng Geol Hydrogeol 46:421–429. https://doi.org/10.1144/qjegh2012-041

    Article  Google Scholar 

  • Göncüoğlu MC, Turhan N, Şentürk K, Uysal Ş, Özcan A, Işık A (1996) Geological properties of structure units of Nallıhan-Sarıcakaya in center Sakarya. The Mineral Research and Exploration Institute of Turkey Report (Unpublished), Ankara

    Google Scholar 

  • Granit Y, Tintant H (1960) Observations Préliminaires sur le Jurassique de la région de Bilecik (Turquie). Comptes Rendus Hebdomadaires Des Séances de l’Académie des Sciences 251(17):1801–1803

    Google Scholar 

  • Hockman A, Kessler DW (1957) A Study of the properties of the U.S. Capitol Sandstone. National Bureau of Standards Report 4998, Gaithersburg, MD, 29p

  • Karakaş A, Selim HH, Coruk Ö, Çatalbaş A, Taş ÖK (2018) Evaluation of Geological and Geomechanical Properties of Osmaneli (Bilecik) Lefke Building Stone, 71st Geological Congress of Turkey. METU Culture and Convention Center, Ankara

    Google Scholar 

  • Kazancı N, Gürbüz A (2014) Natural stones qualified as geological heritage in Turkey. Geol Bull Turkey 57(1):19–44

  • Kılıç I (2017) Physical and mechanical properties of Yenimuhacir sandstone as construction material. Gaziosmanpaşa J Sci Res 6(3):1–11

  • Kılıç I, Gültekin AH (2009) Effects of surface protection resin on water absorption and strength of sandstone, 5th International Advanced Technologies Symposium. Karabük University, pp 2196–2199

  • Kılıç I, Gültekin AH (2011) The physical properties of Edirne (Keşan) region sandstones as building stone. 6th international advanced technologies symposium (IATS’11). Fırat University, pp 228–232

  • Kılıç I, Gültekin AH (2017) Reasons of decomposition observed in sandstones used in the historical Edirne station building. Kırklareli University J Eng Sci 3:56–67

  • Lott G, Cameron D (2005) The building stones of South East England: mineralogy and provenance. 10th euroseminar on microscopy applied to building materials, Paisley, Scotland, 21–25 June 2005

  • Onaran K (2014) Material science, 13th edn. Scientific and Technical Publishing House, Istanbul, p 383

  • Özkan S, Yaşar E (2007) Investigation of Physico-mechanical and petrographic properties of Salbaş (Adana) sandstones. Çukurova University Institute of Natural and Applied Sciences 16(2):112–120

    Google Scholar 

  • Quick GW (2002) Selective guide to the specification of dimension stone. Discovering Stone 1(1):8–21

    Google Scholar 

  • Saner S (1977) Geology of Geyve-Osmaneli-Gölpazarı-Taraklı area; old sediment areas and evolution of sedimentation. The Mineral Research and Exploration Institute of Turkey Report No: 6306, PhD Thesis, Ankara

  • Saner S (1980) The paleogeographical interpretation of the Mudurnu-Göynük basin based on the depositional features of the Jurassic and later ages. Geol Bull Turkey 23:39–52

  • Snethlage R (2005) Leitfaden zur Steinkonservierung. Fraunhofer IRB Verlag, 347p

  • TS EN 12370 (2001) Natural stone test methods-determination of resistance to salt crystallization. TSI, 5p

  • TS EN 12371 (2003) Natural stone test methods-determination of frost resistance. TSI, 12p

  • TS EN 13161 (2009) Natural stone test methods-determination of flexural strength under constant moment. TSI, 17p

  • TS EN 13755 (2009) Natural stone test methods-determination of water absorption at atmospheric pressure. TSI, 10p

  • TS EN 13919 (2004) Natural stone test methods-determination of resistance to ageing by SO2 action in the presence of humidity. TSI, 7p

  • TS EN 14147 (2004) Natural stone test methods-determination of resistance to ageing by salt mist. TSI, 10p

  • TS EN 14157 (2017) Natural stone test methods-determination of the abrasion resistance. TSI, 19p

  • TS EN 14205 (2004) Natural stone test methods-determination of Knoop hardness. TSI, 11p

  • TS EN 1926 (2000) Natural stone test methods-determination of uniaxial compressive strength. TSI, 17p

  • TS EN 1936 (2010) Natural stone test methods-determination of real density and apparent density and of total and open porosity. TSI, 10p

  • TS EN ISO 12572 (2016) Hydrothermal performance of building materials and products-determination of water vapor transmission properties-cup method. TSI, 41p

  • Ulusay R, Türeli K, Ider MH (1994) Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng Geol 38(1–2):135–157. https://doi.org/10.1016/0013-7952(94)90029-9

    Article  Google Scholar 

  • Vazquez P, Alonso FJ, Carrizo L, Molina E, Cultrone G, Blanco M, Zamora I (2013) Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Constr Build Mater 41:868–878

    Article  Google Scholar 

  • Xeidakis GS, Samaras IS (1996) Durability of a sandstone used as a principal building and decorative material in ancient Abdera, Xanthi, N. Greece. Bull Int Assoc Eng Geol 54:137. https://doi.org/10.1007/BF02600706

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Istanbul Commerce University YAPKO unit for financing the project (grant number 2017/16-024), the Osmaneli (Bilecik) Municipality for logistical support during the fieldwork, and ITU-GAL and AKU-NSL laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Karakaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selim, H.H., Karakaş, A. & Coruk, Ö. Investigation of engineering properties for usability of Lefke stone (Osmaneli/Bilecik) as building stone. Bull Eng Geol Environ 78, 6047–6059 (2019). https://doi.org/10.1007/s10064-019-01520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-019-01520-3

Keywords

Navigation