Skip to main content
Log in

Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.)

  • Research Article
  • Published:
Molecules and Cells

Abstract

The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, G., Ebert, P.R., Mitra, A., and Ha, S.B. (1988). Binary vectors. In plant molecular biology manual, (Great Britain: Kluwer Academic Publishers), pp. 1–19.

    Google Scholar 

  • Ayabe, M., and Sumi, S. (1998). Establishment of a novel tissue culture method, stem-disc culture, and its practical application to micropropagation of garlic (Allium sativum L.). Plant Cell Rep. 17, 773–779.

    Article  CAS  Google Scholar 

  • Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., and Wan, Y. (1997). Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol. 115, 971–980.

    PubMed  CAS  Google Scholar 

  • Chu, C.C., Wang, C.C., Sun, C.S., Hsu, C., Yin, K.C., and Bi, C.V. (1975). Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen source. Sci. China Inf. Sci. 18, 659–668.

    Google Scholar 

  • Doyle, J.J., and Dickson, E.E. (1987). Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36, 715–772.

    Article  Google Scholar 

  • Eady, C., Davis, S., Catanach, A., Kenel, F., and Hunger, S. (2005). Agrobacterium tumefaciens-mediated transformation of leek (Allium porrum) and garlic (Allium sativum). Plant Cell Rep. 24, 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Frame, B.R., McMurray, J.M., Fonger, T.M., Main, M.L., Taylor, K.W., Torney, F.J., Paz, M.M., and Wang, K. (2006). Improved Agrobacterium mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep. 25, 1024–1034.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg, O.L., Miller, R.A., and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Gosal, S.S., and Kang, M.S. (2012). Plant tissue culture and genetic transformation for crop improvement. In improving crop resistance to abiotic stress, (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA), doi: 10.1002/9783527632930.ch16.

    Google Scholar 

  • Hood, E.E., Helmer, G.L., Fraley, R.T., and Chilton, M.D. (1986). The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168, 1291–1301.

    PubMed  CAS  Google Scholar 

  • Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195.

    Article  PubMed  CAS  Google Scholar 

  • Kenel, F., Eady, C., and Brinch, S. (2010). Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue. Plant Cell Rep. 29, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, T., Hasegawa, H., and Suzuki, M. (2000). Transformation and regeneration of garlic (Alium sativum L.) by Agrobacteriummediated gene transfer. Plant Cell Rep. 19, 989–993.

    Article  CAS  Google Scholar 

  • Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  • Park, M.Y., Yi, N.R., Lee, H.Y., Kim, S.T., Kim, M., Park, J.H., Kim, J.K., Lee, J.S., Cheong, J.J., and Choi, Y.D. (2002). Generation of chlorsulfuron-resistant transgenic garlic plants (Allium sativum L.) by particle bombardment. Mol. Breed. 9, 171–181.

    Article  CAS  Google Scholar 

  • Paz, M.M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A.K., and Wang, K. (2004). Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136, 167–179.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (NY: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Yi, G., Lee, S.K., Hong, Y.K., Cho, Y.C., Nam, M.H., Kim, S.C., Han, S.S., Wang, G.L., Hahn, T.R., Ronald, P.C., et al. (2004). Use of Pi5(t) markers in marker-assisted selection to screen for cultivars with resistance to Magnaporthe grisea. Theor. Appl. Genet. 109, 978–985.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, S.J., Henken, B., Ahn, Y.K., Krens, F.A., and Kik, C. (2004). The development of a reproducible Agrobacterium tumefaciens transformation system for garlic (Allium sativum L.) and the production of transgenic garlic resistant to beet armyworm (Spodoptera exigua Hübner). Mol. Breed. 14, 293–307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Jeon.

About this article

Cite this article

Ahn, YK., Yoon, MK. & Jeon, JS. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.). Mol Cells 36, 158–162 (2013). https://doi.org/10.1007/s10059-013-0142-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0142-6

Keywords

Navigation