Skip to main content
Log in

Establishment of a bone-specific col10a1:GFP transgenic zebrafish

  • Research Article
  • Published:
Molecules and Cells

Abstract

During skeletal development, both osteogenic and chondrogenic programs are initiated from multipotent mesenchymal cells, requiring a number of signaling molecules, transcription factors, and downstream effectors to orchestrate the sophisticated process. Col10a1, an important downstream effector gene, has been identified as a marker for maturing chondrocytes in higher vertebrates, such as mammals and birds. In zebrafish, this gene has been shown to be expressed in both osteoblasts and chondrocytes, but no study has reported its role in osteoblast development. To initially delineate the osteogenic program from chondrogenic lineage development, we used the zebrafish col10a1 promoter to establish a transgenic zebrafish expressing a GFP reporter specifically in osteoblast-specific bone structures that do not involve cartilaginous programs. A construct harboring a ∼2.2-kb promoter region was found to be sufficient to drive the reporter gene in osteoblast-specific bone structures within the endogenous col10a1 expression domain, confirming that separable cis-acting elements exist for distinct cell type-specific expression of col10a1 during zebrafish skeletal development. The ∼2.2-kb col10a1:GFP transgenic zebrafish marking only bone structures derived from osteoblasts will undoubtedly be an invaluable tool for identifying and characterizing molecular events driving osteoblast development in zebrafish, which may further provide a differential mechanism where col10a1 is involved in the development of chondrocytes undergoing maturation in other vertebrate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beier, F., Lammi, M.J., Bertling, W., and von der Mark, K. (1996). Transcriptional regulation of the human type X collagen gene expression. Ann. N Y Acad. Sci. 785, 209–211.

    Article  PubMed  CAS  Google Scholar 

  • Beier, F., Vornehm, S., Poschl, E., von der Mark, K., and Lammi, M.J. (1997). Localization of silencer and enhancer elements in the human type X collagen gene. J. Cell. Biochem. 66, 210–218.

    Article  PubMed  CAS  Google Scholar 

  • Choe, S.K., Lu, P., Nakamura, M., Lee, J., and Sagerstrom, C.G. (2009). Meis cofactors control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish embryogenesis. Dev. Cell 17, 561–567.

    Article  PubMed  CAS  Google Scholar 

  • Cubbage, C.C., and Mabee, P.M. (1996). Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J. Morphol. 229, 121–160.

    Article  Google Scholar 

  • Dourado, G., and LuValle, P. (1998). Proximal DNA elements mediate repressor activity conferred by the distal portion of the chicken collagen X promoter. J. Cell. Biochem. 70, 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Drissi, M.H., Li, X., Sheu, T.J., Zuscik, M.J., Schwarz, E.M., Puzas, J.E., Rosier, R.N., and O’Keefe, R.J. (2003). Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J. Cell. Biochem. 90, 1287–1298.

    Article  PubMed  CAS  Google Scholar 

  • Eames, B.F., Amores, A., Yan, Y.L., and Postlethwait, J.H. (2012). Evolution of the osteoblast: skeletogenesis in gar and zebrafish. BMC Evol. Biol. 12, 27.

    Article  PubMed  Google Scholar 

  • Enomoto, H., Enomoto-Iwamoto, M., Iwamoto, M., Nomura, S., Himeno, M., Kitamura, Y., Kishimoto, T., and Komori, T. (2000). Cbfa1 is a positive regulatory factor in chondrocyte maturation. J. Biol. Chem. 275, 8695–8702.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, C.L., and Moro, E. (2012). Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Front Endocrinol. 3, 91.

    Article  Google Scholar 

  • Hassan, M.Q., Javed, A., Morasso, M.I., Karlin, J., Montecino, M., van Wijnen, A.J., Stein, G.S., Stein, J.L., and Lian, J.B. (2004). Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol. Cell. Biol. 24, 9248–9261.

    Article  PubMed  CAS  Google Scholar 

  • Higashikawa, A., Saito, T., Ikeda, T., Kamekura, S., Kawamura, N., Kan, A., Oshima, Y., Ohba, S., Ogata, N., Takeshita, K., et al. (2009). Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type X collagen gene. Arthritis. Rheum. 60, 166–178.

    Article  PubMed  CAS  Google Scholar 

  • Jacenko, O., LuValle, P.A., and Olsen, B.R. (1993). Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature 365, 56–61.

    Article  PubMed  CAS  Google Scholar 

  • Jung, S.H., Kim, S., Chung, A.Y., Kim, H.T., So, J.H., Ryu, J., Park, H.C., and Kim, C.H. (2010). Visualization of myelination in GFPtransgenic zebrafish. Dev. Dyn. 239, 592–527.

    Article  PubMed  CAS  Google Scholar 

  • Jung, S.H., Kim, H.S., Ryu, J.H., Gwak, J.W., Bae, Y.K., Kim, C.H., and Yeo, S.Y. (2012). Her4-positive population in the tectum opticum is proliferating neural precursors in the adult zebrafish brain. Mol. Cells 33, 627–632.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.J., Kang, K.H., Kim, C.H., and Choi, S.Y. (2008). Real-time imaging of mitochondria in transgenic zebrafish expressing mitochondrially targeted GFP. Biotechniques 45, 331–334.

    Article  PubMed  Google Scholar 

  • Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310.

    Article  PubMed  CAS  Google Scholar 

  • Komori, T. (2010). Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 339, 189–195.

    Article  PubMed  CAS  Google Scholar 

  • Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764.

    Article  PubMed  CAS  Google Scholar 

  • Li, N., Felber, K., Elks, P., Croucher, P., and Roehl, H.H. (2009). Tracking gene expression during zebrafish osteoblast differentiation. Dev. Dyn. 238, 459–466.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Lu, Y., Ding, M., Napierala, D., Abbassi, S., Chen, Y., Duan, X., Wang, S., Lee, B., and Zheng, Q. (2011). Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer. J. Bone Miner. Res. 26, 2899–2910.

    Article  PubMed  CAS  Google Scholar 

  • Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R.E., Huitema, L.F., Skinner, R.E., Brunt, L.H., Severn, C., Schulte-Merker, S., and Hammond, C.L. (2013). New tools for studying osteoarthritis genetics in zebrafish. Osteoarthritis Cartilage 21, 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771.

    Article  PubMed  CAS  Google Scholar 

  • Park, H.C., Kim, C.H., Bae, Y.K., Yeo, S.Y., Kim, S.H., Hong, S.K., Shin, J., Yoo, K.W., Hibi, M., Hirano, T., et al. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev. Biol. 227, 279–293.

    Article  PubMed  CAS  Google Scholar 

  • Riemer, S., Gebhard, S., Beier, F., Poschl, E., and von der Mark, K. (2002). Role of c-fos in the regulation of type X collagen gene expression by PTH and PTHrP: localization of a PTH/PTHrPresponsive region in the human COL10A1 enhancer. J. Cell. Biochem. 86, 688–699.

    Article  PubMed  CAS  Google Scholar 

  • Simoes, B., Conceicao, N., Viegas, C.S., Pinto, J.P., Gavaia, P.J., Hurst, L.D., Kelsh, R.N., and Cancela, M.L. (2006). Identification of a promoter element within the zebrafish colXalpha1 gene responsive to runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2-alphaA2. Calcif. Tissue Int. 79, 230–244.

    Article  PubMed  CAS  Google Scholar 

  • van der Kraan, P.M., and van den Berg, W.B. (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?. Osteoarthritis Cartilage 20, 223–232.

    Article  PubMed  Google Scholar 

  • Zheng, Q., Zhou, G., Morello, R., Chen, Y., Garcia-Rojas, X., and Lee, B. (2003). Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J. Cell Biol. 162, 833–842.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Q., Keller, B., Zhou, G., Napierala, D., Chen, Y., Zabel, B., Parker, A.E., and Lee, B. (2009) Localization of the cis-enhancer element for mouse type X collagen expression in hypertrophic chondrocytes in vivo. J. Bone Miner. Res. 24, 1022–1032.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong-Kyu Choe or Cheol-Hee Kim.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Kim, YI., Lee, S., Jung, SH. et al. Establishment of a bone-specific col10a1:GFP transgenic zebrafish. Mol Cells 36, 145–150 (2013). https://doi.org/10.1007/s10059-013-0117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0117-7

Keywords

Navigation