Skip to main content
Log in

Angiopoietin-1 elicits pro-inflammatory responses in monocytes and differentiating macrophages

  • Research Article
  • Published:
Molecules and Cells

Abstract

The angiopoietin/Tie2 system is an important regulator of angiogenesis and inflammation. In addition to its functions in endothelial cells, Tie2 expression on non-endothelial cells allows for angiopoietin ligands to stimulate the cells. Although Ang1 is a strong Tie2 receptor agonist, little is known regarding the effect of Ang1 on non-endothelial cells, such as monocytes and macrophages. In this study, we found that Ang1 functionally binds to and stimulates monocytes via p38 and Erk1/2 phosphorylation. Ang1-mediated monocyte stimulation is associated with proinflammatory cytokine TNF-α expression. We also determined that Ang1 switched macrophage differentiation toward a pro-inflammatory phenotype, even in the presence of an anti-inflammatory mediator. These findings suggest that Ang1 plays a role in stimulating pro-inflammatory responses and could provide a new strategy by which to manage inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S., Cudmore, M.J., Wang, K., Hewett, P., Potluri, R., Fujisawa, T., and Ahmed, A. (2010). Angiopoietin-1 induces migration of monocytes in a tie-2 and integrin-independent manner. Hypertension 56, 477–483.

    Article  PubMed  CAS  Google Scholar 

  • Aplin, A.C., Gelati, M., Fogel, E., Carnevale, E., and Nicosia, R.F. (2006). Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol. Genomics 27, 20–28.

    Article  PubMed  CAS  Google Scholar 

  • Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y., and Suda, T. (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118, 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Baffert, F., Le, T., Thurston, G., and McDonald, D.M. (2006). Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules. Am. J. Physiol. Heart Circ. Physiol. 290, H107–118.

    Article  PubMed  CAS  Google Scholar 

  • Bezuidenhout, L., Zilla, P., and Davies, N. (2009). Association of Ang-2 with integrin beta 2 controls Ang-2/PDGF-BB-dependent upregulation of human peripheral blood monocyte fibrinolysis. Inflammation 32, 393–401.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, T.R., Feng, Y., Maisonpierre, P.C., Mrksich, M., and Morla, A.O. (2001). Direct cell adhesion to the angiopoietins mediated by integrins. J. Biol. Chem. 276, 26516–26525.

    Article  PubMed  CAS  Google Scholar 

  • Coffelt, S.B., Tal, A.O., Scholz, A., De Palma, M., Patel, S., Urbich, C., Biswas, S.K., Murdoch, C., Plate, K.H., Reiss, Y., et al. (2010). Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res. 70, 5270–5280.

    Article  PubMed  CAS  Google Scholar 

  • De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., and Naldini, L. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226.

    Article  PubMed  Google Scholar 

  • Fiedler, U., and Augustin, H.G. (2006). Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 27, 552–558.

    Article  PubMed  CAS  Google Scholar 

  • Gravallese, E.M., Pettit, A.R., Lee, R., Madore, R., Manning, C., Tsay, A., Gaspar, J., Goldring, M.B., Goldring, S.R., and Oettgen, P. (2003). Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann. Rheum. Dis. 62, 100–107.

    Article  PubMed  CAS  Google Scholar 

  • Gu, H., Cui, M., Bai, Y., Chen, F., Ma, K., Zhou, C., and Guo, L. (2010). Angiopoietin-1/Tie2 signaling pathway inhibits lipopolysaccharide-induced activation of RAW264.7 macrophage cells. Biochem. Biophys. Res. Commun. 392, 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Guiducci, C., Vicari, A.P., Sangaletti, S., Trinchieri, G., and Colombo, M.P. (2005). Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 65, 3437–3446.

    PubMed  CAS  Google Scholar 

  • Harfouche, R., Gratton, J.P., Yancopoulos, G.D., Noseda, M., Karsan, A., and Hussain, S.N. (2003). Angiopoietin-1 activates both anti- and proapoptotic mitogen-activated protein kinases. FASEB J. 17, 1523–1525.

    PubMed  CAS  Google Scholar 

  • Hwang, J.A., Lee, E.H., Lee, S.D., Park, J.B., Jeon, B.H., and Cho, C.H. (2009). COMP-Ang1 ameliorates leukocyte adhesion and reinforces endothelial tight junctions during endotoxemia. Biochem. Biophys. Res. Commun. 381, 592–596.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, C.H., Lee, Y.M., Choi, K.S., Seong, Y.R., Kim, Y.J., Im, D.S., and Kim, K.W. (2005). Hypoxia-responsive element-mediated soluble Tie2 vector exhibits an anti-angiogenic activity in vitro under hypoxic condition. Int. J. Oncol. 26, 211–216.

    PubMed  CAS  Google Scholar 

  • Kim, I., Moon, S.O., Park, S.K., Chae, S.W., and Koh, G.Y. (2001). Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ. Res. 89, 477–479.

    Article  PubMed  CAS  Google Scholar 

  • Kim, I., Oh, J.L., Ryu, Y.S., So, J.N., Sessa, W.C., Walsh, K., and Koh, G.Y. (2002). Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB J. 16, 126–128.

    PubMed  Google Scholar 

  • Lemieux, C., Maliba, R., Favier, J., Theoret, J.F., Merhi, Y., and Sirois, M.G. (2005). Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood 105, 1523–1530.

    Article  PubMed  CAS  Google Scholar 

  • Long, D.A., Price, K.L., Ioffe, E., Gannon, C.M., Gnudi, L., White, K.E., Yancopoulos, G.D., Rudge, J.S., and Woolf, A.S. (2008). Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney Int. 74, 300–309.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., and Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686.

    Article  PubMed  CAS  Google Scholar 

  • Melani, C., Stoppacciaro, A., Foroni, C., Felicetti, F., Care, A., and Colombo, M.P. (2004). Angiopoietin decoy secreted at tumor site impairs tumor growth and metastases by inducing local inflammation and altering neoangiogenesis. Cancer Immunol. Immunother. 53, 600–608.

    Article  PubMed  CAS  Google Scholar 

  • Mosser, D.M., and Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969.

    Article  PubMed  CAS  Google Scholar 

  • Ruffell, B., Affara, N.I., and Coussens, L.M. (2012). Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33, 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Rutault, K., Hazzalin, C.A., and Mahadevan, L.C. (2001). Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha) mRNA induction. Evidence for selective destabilization of TNF-alpha transcripts. J. Biol. Chem. 276, 6666–6674.

    Article  PubMed  CAS  Google Scholar 

  • Saccani, A., Schioppa, T., Porta, C., Biswas, S.K., Nebuloni, M., Vago, L., Bottazzi, B., Colombo, M.P., Mantovani, A., and Sica, A. (2006). p50 nuclear factor-kappaB overexpression in tumorassociated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 66, 11432–11440.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, J.F., Monahan, J.B., and Smith, W.G. (2007). p38 pathway kinases as anti-inflammatory drug targets. J. Dent. Res. 86, 800–811.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, M., and Augustin, H.G. (2009). The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12, 125–137.

    Article  PubMed  CAS  Google Scholar 

  • Thurston, G., Rudge, J.S., Ioffe, E., Zhou, H., Ross, L., Croll, S.D., Glazer, N., Holash, J., McDonald, D.M., and Yancopoulos, G.D. (2000). Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat. Med. 6, 460–463.

    Article  PubMed  CAS  Google Scholar 

  • Thurston, G., Rudge, J.S., Ioffe, E., Papadopoulos, N., Daly, C., Vuthoori, S., Daly, T., Wiegand, S.J., and Yancopoulos, G.D. (2005). The anti-inflammatory actions of angiopoietin-1. EXS 233–245.

    Google Scholar 

  • Yuan, H.T., Khankin, E.V., Karumanchi, S.A., and Parikh, S.M. (2009). Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol. Cell Biol. 29, 2011–2022.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hyun Cho.

About this article

Cite this article

Seok, S.H., Heo, JI., Hwang, JH. et al. Angiopoietin-1 elicits pro-inflammatory responses in monocytes and differentiating macrophages. Mol Cells 35, 550–556 (2013). https://doi.org/10.1007/s10059-013-0088-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0088-8

Keywords

Navigation