Skip to main content

Advertisement

Log in

Angiopoietin decoy secreted at tumor site impairs tumor growth and metastases by inducing local inflammation and altering neoangiogenesis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The extracellular domain of the receptor tyrosine kinase Tie2/TEK (exTEK) has been used as an angiopoietin decoy to study the role of angiopoietins in the tumor–host interactions, using a syngeneic model of experimental metastases and subcutaneous tumor. Soluble exTEK secreted by transfected tumor cells inhibited HUVECs from forming tubes in Matrigel. ExTEK-transfected C26 colon carcinoma and TS/A mammary tumor cells displayed reduced growth rate when injected subcutaneously, and reduced ability to form experimental metastases when injected intravenously. Immunohistochemical analysis of tumors and metastases showed increased leukocytes infiltration and signs of inflammation in exTEK-secreting compared to parental tumor, as well as impairment in neo-vessel growth and organization. However, while neoangiogenesis eventually rescued in the subcutis, it failed to organize in the experimental metastases of exTEK-secreting tumor, contributing to the hampering of metastatic growth and to increased mice survival. The reactive infiltrate of C26TEK contained a different percentage of leukocytes and was responsible for the tumor inhibition. In fact, leukopenia induced by γ-irradiation of recipient mice or injection into interferon gamma (IFN-γ) gene knockout (GKO) mice resulted in reduced mouse survival and an increased number of lung metastases. On the other hand, interleukin (IL)-12 treatment prolonged the survival of mice bearing subcutaneous C26TEK but not of those bearing lung metastases, suggesting that IL-12 could exert further antiangiogenic effects at the site where the tumor can restore neoangiogenesis. These results show in vivo that reduced angiopoietin availability at the tumor site induces a local inflammatory response and impairment of neoangiogenesis which act synergistically to limit tumor growth and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2A,B
Fig. 3A,B
Fig. 4A–E
Fig. 5A,B
Fig. 6A,B
Fig. 7A,B
Fig. 8A,B

Similar content being viewed by others

Abbreviations

AEC:

amino-ethylcarbazole

ELISA:

enzyme-linked immunosorbent assay

HRP:

horseradish peroxidase

HUVEC:

human umbilical vascular endothelial cell

i.v.:

intravenous

s.c.:

subcutaneous

TBS:

Tris-HCl buffered solution

References

  1. Boggio K, Di Carlo E, Rovero S, Cavallo F, Quaglino E, Lollini PL, Nanni P, Nicoletti G, Wolf S, Musiani P, Forni G (2000) Ability of systemic IL-12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res 60:359

    CAS  PubMed  Google Scholar 

  2. Buckeley CD, Pilling D, Lord JM, Akbar AN, Scheel-Toellner D, Salmon M (2001) Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol 22:199

    Article  PubMed  Google Scholar 

  3. Butcher EC, Williams M, Youngman K, Rott L, Briskin M (1999) Lymphocyte trafficking and regional immunity. Adv Immunol 72:209

    CAS  PubMed  Google Scholar 

  4. Colombo MP, Ferrari G, Stoppacciaro A, Parenza M, Rodolfo M, Mavilio F, Parmiani G (1991) Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 173:889

    PubMed  Google Scholar 

  5. Colombo MP, Lombardi L, Stoppacciaro A, Melani C, Parenza M, Bottazzi B, Parmiani G (1992) Granulocyte colony-stimulating factor (G-CSF) gene transduction in murine adenocarcinoma drives neutrophil-mediated tumor inhibition in vivo. J Immunol 149:113

    CAS  PubMed  Google Scholar 

  6. Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X, Gri G, Wysocha M, Kim JE, Liu L, Liao F, Farber JM, Pestka S, Trinchieri G, Lee WM (1998) Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9:25

    CAS  PubMed  Google Scholar 

  7. Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193:F23

    Google Scholar 

  8. Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA (1993) Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259:1739

    CAS  PubMed  Google Scholar 

  9. Dumont DJ, Gradwohl GJ, Fong GH, Auerbach R, Breitman ML (1993) The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8:1293

    CAS  PubMed  Google Scholar 

  10. Foda HD, Zucker S (2001) Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today 6:478

    Article  CAS  PubMed  Google Scholar 

  11. Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, Rudge J, Yancopoulos G, Vadas MA (2000) Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 87:603

    CAS  PubMed  Google Scholar 

  12. Goede V, Schmidt T, Kimina S, Kozian D, Augustin HG (1998) Analysis of blood vessel maturation process during cyclic ovarian angiogenesis. Lab Invest 78:1385

    CAS  PubMed  Google Scholar 

  13. Hanahan D (1997) Signaling vascular morphogenesis and maitenance. Science 277:48

    CAS  PubMed  Google Scholar 

  14. Hayes AJ, Huang W, Mallah J, Yang D, Lippman ME, Li LY (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc. Res 58:224

    Article  CAS  PubMed  Google Scholar 

  15. Holash J, Wiegard SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356

    CAS  PubMed  Google Scholar 

  16. Holash J, Maisonpierre P, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994

    CAS  PubMed  Google Scholar 

  17. Kim I, Moon S, Park SK, Chae SW, Koh GY (2001) Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 89:477

    CAS  PubMed  Google Scholar 

  18. Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for tie2 in pathologic vascular growth. J Clin Invest 100:2072

    CAS  PubMed  Google Scholar 

  19. Lin P, Buxton JA, Acheson A, Radziejewski C, Maisonpierre PC, Yancopoulos GD, Channon KM, Hale LP, Dewhirst MW, George SE, Peters KG (1998) Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase tie2. Proc Natl Acad Sci U S A 95:8829

    Article  CAS  PubMed  Google Scholar 

  20. Maisonpierre PC, Suri C, Jones P, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science 277:55

    PubMed  Google Scholar 

  21. Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-asociated macrophages. Immunol Today 13:265

    CAS  PubMed  Google Scholar 

  22. Melani C, Figini M, Nicosia D, Luison E, Ramakrishna V, Casorati G, Parmiani G, Eshhar Z, Canevari S, Colombo MP (1998) Targeting of interleukin-2 to human ovarian carcinoma by fusion with a single-chain Fv of antifolate receptor antibody. Cancer Res 58:4146

    CAS  PubMed  Google Scholar 

  23. Nanni P, Di Giovanni C, Lollini PL, Nicoletti G, Prodi G (1983) TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary carcinoma. Clin Exp Metastasis 1:373

    CAS  PubMed  Google Scholar 

  24. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC (1999) Direct action of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213

    PubMed  Google Scholar 

  25. Siemeister G, Sshirner M, Weindel K, Reusch P, Menrad A, Marme D, Martigny-Baron G (1999) Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the tie-2 pathway. Cancer Res 59:3185

    CAS  PubMed  Google Scholar 

  26. Stoppacciaro A, Melani C, Parenza M, Mastracchio A, Bassi C, Baroni C, Parmiani G, Colombo MP (1993) Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon gamma. J Exp Med 178:151

    CAS  PubMed  Google Scholar 

  27. Stratmann A, Risau W, Plate KH (1998) Cell-type specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459

    Google Scholar 

  28. Stratmann A, Acker T, Burger AM, Amann K, Risau W, Plate KH (2001) Differential inhibition of tumor angiogenesis by tie2 and vascular endothelial growth factor receptor-2 dominant-negative receptor mutants. Int J Cancer 91:273

    CAS  PubMed  Google Scholar 

  29. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511

    CAS  PubMed  Google Scholar 

  30. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and −2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273:18514

    Article  CAS  PubMed  Google Scholar 

  31. Yano M, Iwama A, Nishio H, Suda J, Takada G, Suda T (1997) Expression and function of murine receptor tyrosine kinases, tie and tek, in hematopoietic stem cells. Blood 89:4317

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Association for Cancer Research (AIRC), by the CNR (grant 99.02526.CT04), the Italian Ministry of University and Scientific Research (MURST), and the ISS Italy-USA Program on Tumor Therapy. We thank Mr Ivano Arioli and Ms Daniela Nicosia for their skillful technical assistance, and Mr Mario Azzini for art work. We are indebted to Dr Pengnian Charles Lin (Duke University Medical Center, Durham, NC) and Prof. Toshio Suda (Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto, Japan) for providing the anti-Tie2/TEK-specific antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Melani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melani, C., Stoppacciaro, A., Foroni, C. et al. Angiopoietin decoy secreted at tumor site impairs tumor growth and metastases by inducing local inflammation and altering neoangiogenesis. Cancer Immunol Immunother 53, 600–608 (2004). https://doi.org/10.1007/s00262-004-0500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0500-5

Keywords

Navigation