Skip to main content
Log in

TrkC promotes survival and growth of leukemia cells through Akt-mTOR-Dependent Up-Regulation of PLK-1 and Twist-1

  • Research Article
  • Published:
Molecules and Cells

Abstract

It has been suggested that activation of receptor PTKs is important for leukemogenesis and leukemia cell response to targeted therapy in hematological malignancies including leukemia. PTKs induce activation of the PI3K/Akt/mTOR pathway, which can result in prevention of apoptosis. Here, we describe an important role of the TrkC-associated molecular network in the process of leukemogenesis. TrkC was found to be frequently overexpressed in human leukemia cells and leukemia subtypes. In U937 human leukemia cells, blockade of TrkC using small hairpin RNA (shRNA) specific to TrkC or K562a, a specific inhibitor of TrkC, resulted in a significant decrease in growth and survival of the cells, which was closely associated with reduced mTOR level and Akt activity. In addition, TrkC enhances the survival and proliferation of leukemia, which is correlated with activation of the PI3K/Akt pathway. Moreover, TrkC significantly inhibits apoptosis via induction of the expression of PLK-1 and Twist-1 through activation of AKT/mTor pathway; therefore, it plays a key role in leukemogenesis. These findings reveal an unexpected physiological role for TrkC in the pathogenesis of leukemia and have important implications for understanding various hematological malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen-Tsai, C.P., Colome-Grimmer, M., and Wagner, R.F., Jr. (2004). Correlations among neural cell adhesion molecule, nerve growth factor, and its receptors, TrkA, TrkB, TrkC, and p75, in perineural invasion by basal cell and cutaneous squamous cell carcinomas. Dermatol. Surg. 30, 1009–1016.

    Article  PubMed  Google Scholar 

  • Cheng, G.Z., Chan, J., Wang, Q., Zhang, W., Sun, C.D., and Wang, L.H. (2007). Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 67, 1979–1987.

    Article  PubMed  CAS  Google Scholar 

  • Christiansen, D.H., Andersen, M.K., Desta, F., and Pedersen-Bjergaard, J. (2005). Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 19, 2232–2240.

    Article  PubMed  CAS  Google Scholar 

  • Cosset, E., Hamdan, G., Jeanpierre, S., Voeltzel, T., Sagorny, K., Hayette, S., Mahon, F.X., Dumontet, C., Puisieux, A., Nicolini, F.E., et al. (2011). Deregulation of TWIST-1 in the CD34+ compartment represents a novel prognostic factor in chronic myeloid leukemia. Blood 117, 1673–1676.

    Article  PubMed  CAS  Google Scholar 

  • Dong, F., Brynes, R.K., Tidow, N., Welte, K., Lowenberg, B., and Touw, I.P. (1995). Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N. Engl. J. Med. 333, 487–493.

    Article  PubMed  CAS  Google Scholar 

  • Eguchi, M., Eguchi-Ishimae, M., Tojo, A., Morishita, K., Suzuki, K., Sato, Y., Kudoh, S., Tanaka, K., Setoyama, M., Nagamura, F., et al. (1999). Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93, 1355–1363.

    PubMed  CAS  Google Scholar 

  • Evangelisti, C., Ricci, F., Tazzari, P., Tabellini, G., Battistelli, M., Falcieri, E., Chiarini, F., Bortul, R., Melchionda, F., Pagliaro, P., et al. (2011). Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia 25, 781–791.

    Article  PubMed  CAS  Google Scholar 

  • Fenouille, N., Tichet, M., Dufies, M., Pottier, A., Mogha, A., Soo, J.K., Rocchi, S., Mallavialle, A., Galibert, M.D., Khammari, A., et al. (2012). The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 7, e40378.

    Article  PubMed  CAS  Google Scholar 

  • Gleixner, K.V., Ferenc, V., Peter, B., Gruze, A., Meyer, R.A., Hadzijusufovic, E., Cerny-Reiterer, S., Mayerhofer, M., Pickl, W.F., Sillaber, C., et al. (2010). Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res. 70, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Grotzer, M.A., Janss, A.J., Fung, K., Biegel, J.A., Sutton, L.N., Rorke, L.B., Zhao, H., Cnaan, A., Phillips, P.C., Lee, V.M., et al. (2000). TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J. Clin. Oncol. 18, 1027–1035.

    PubMed  CAS  Google Scholar 

  • Haferlach, T., Kohlmann, A., Wieczorek, L., Basso, G., Kronnie, G.T., Bene, M.C., De Vos, J., Hernandez, J.M., Hofmann, W.K., Mills, K.I., et al. (2010). Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J. Clin. Oncol. 28, 2529–2537.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, P.T., Anderson, K.E., Davidson, K., and Stephens, L.R. (2006). Signalling through class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 34, 647–662.

    Article  PubMed  CAS  Google Scholar 

  • Hisaoka, M., Sheng, W.Q., Tanaka, A., and Hashimoto, H. (2002). Gene expression of TrkC (NTRK3) in human soft tissue tumours. J. Pathol. 197, 661–667.

    Article  PubMed  CAS  Google Scholar 

  • Huang, E.J., and Reichardt, L.F. (2003). Trk receptors: roles in neuronal signal transduction. Ann. Rev. Biochem. 72, 609–642.

    Article  PubMed  CAS  Google Scholar 

  • Ikezoe, T., Yang, J., Nishioka, C., Takezaki, Y., Tasaka, T., Togitani, K., Koeffler, H.P., and Yokoyama, A. (2009). A novel treatment strategy targeting polo-like kinase 1 in hematological malignancies. Leukemia 23, 1564–1576.

    Article  PubMed  CAS  Google Scholar 

  • Jin, W., Yun, C., Kim, H.S., and Kim, S.J. (2007). TrkC binds to the bone morphogenetic protein type II receptor to suppress bone morphogenetic protein signaling. Cancer Res. 67, 9869–9877.

    Article  PubMed  CAS  Google Scholar 

  • Jin, W., Kim, G.M., Kim, M.S., Lim, M.H., Yun, C., Jeong, J., Nam, J.S., and Kim, S.J. (2010). TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 31, 1939–1947.

    Article  PubMed  CAS  Google Scholar 

  • Jin, W., Lee, J.J., Kim, M.S., Son, B.H., Cho, Y.K., and Kim, H.P. (2011). DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 406, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Kiyoi, H., Towatari, M., Yokota, S., Hamaguchi, M., Ohno, R., Saito, H., and Naoe, T. (1998). Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 12, 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  • Knezevich, S.R., McFadden, D.E., Tao, W., Lim, J.F., and Sorensen, P.H. (1998). A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat. Genet. 18, 184–187.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Beutel, G., Rhein, M., Meyer, J., Koenecke, C., Neumann, T., Yang, M., Krauter, J., von Neuhoff, N., Heuser, M., et al. (2009) High-affinity neurotrophin receptors and ligands promote leukemogenesis. Blood 113, 2028–2037.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Schwaller, J., Kutok, J., Cain, D., Aster, J.C., Williams, I.R., and Gilliland, D.G. (2000) Signal transduction and transforming properties of the TEL-TRKC fusions associated with t(12;15) (p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. EMBO J. 19, 1827–1838.

    Article  PubMed  CAS  Google Scholar 

  • Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715.

    Article  PubMed  CAS  Google Scholar 

  • Manning, B.D., and Cantley, L.C. (2007). AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274.

    Article  PubMed  CAS  Google Scholar 

  • McGregor, L.M., McCune, B.K., Graff, J.R., McDowell, P.R., Romans, K.E., Yancopoulos, G.D., Ball, D.W., Baylin, S.B., and Nelkin, B.D. (1999). Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc. Natl. Acad. Sci. USA 96, 4540–4545.

    Article  PubMed  CAS  Google Scholar 

  • Min, Y.H., Eom, J.I., Cheong, J.W., Maeng, H.O., Kim, J.Y., Jeung, H.K., Lee, S.T., Lee, M.H., Hahn, J.S., and Ko, Y.W. (2003). Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 17, 995–997.

    Article  PubMed  CAS  Google Scholar 

  • Padua, R.A., Guinn, B.A., Al-Sabah, A.I., Smith, M., Taylor, C., Pettersson, T., Ridge, S., Carter, G., White, D., Oscier, D., et al. (1998). RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 12, 887–892.

    Article  PubMed  CAS  Google Scholar 

  • Park, S., Chapuis, N., Tamburini, J., Bardet, V., Cornillet-Lefebvre, P., Willems, L., Green, A., Mayeux, P., Lacombe, C., and Bouscary, D. (2010). Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica 95, 819–828.

    Article  PubMed  CAS  Google Scholar 

  • Puisieux, A., Valsesia-Wittmann, S., and Ansieau, S. (2006). A twist for survival and cancer progression. Br. J. Cancer 94, 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Renner, A.G., Creancier, L., Dos Santos, C., Fialin, C., Recher, C., Bailly, C., Kruczynski, A., Payrastre, B., and Manenti, S. (2010) A functional link between polo-like kinase 1 and the mammalian target-of-rapamycin pathway? Cell Cycle 9, 1690–1696.

    Article  PubMed  CAS  Google Scholar 

  • Satoh, F., Mimata, H., Nomura, T., Fujita, Y., Shin, T., Sakamoto, S., Hamada, Y., and Nomura, Y. (2001). Autocrine expression of neurotrophins and their receptors in prostate cancer. Int. J. Urol. 8, S28–34.

    Article  PubMed  CAS  Google Scholar 

  • Segal, R.A. (2003). Selectivity in neurotrophin signaling: theme and variations. Ann. Rev. Neurosci. 26, 299–330.

    Article  PubMed  CAS  Google Scholar 

  • Segal, R.A., Goumnerova, L.C., Kwon, Y.K., Stiles, C.D., and Pomeroy, S.L. (1994). Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc. Natl. Acad. Sci. USA 91, 12867–12871.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, A., Taki, T., Tabuchi, K., Tawa, A., Horibe, K., Tsuchida, M., Hanada, R., Tsukimoto, I., and Hayashi, Y. (2006). KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 107, 1806–1809.

    Article  PubMed  CAS  Google Scholar 

  • Song, G., Ouyang, G., and Bao, S. (2005). The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59–71.

    Article  PubMed  CAS  Google Scholar 

  • Stommel, J.M., Kimmelman, A.C., Ying, H., Nabioullin, R., Ponugoti, A.H., Wiedemeyer, R., Stegh, A.H., Bradner, J.E., Ligon, K.L., Brennan, C., et al. (2007). Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318, 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Tang, J., Yang, X., and Liu, X. (2008). Phosphorylation of Plk1 at Ser326 regulates its functions during mitotic progression. Oncogene 27, 6635–6645.

    Article  PubMed  CAS  Google Scholar 

  • Tognon, C., Knezevich, S.R., Huntsman, D., Roskelley, C.D., Melnyk, N., Mathers, J.A., Becker, L., Carneiro, F., MacPherson, N., Horsman, D., et al. (2002). Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Vichalkovski, A., Gresko, E., Hess, D., Restuccia, D.F., and Hemmings, B.A. (2010). PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage. Oncogene 29, 3554–3565.

    Article  PubMed  CAS  Google Scholar 

  • Wai, D.H., Knezevich, S.R., Lucas, T., Jansen, B., Kay, R.J., and Sorensen, P.H. (2000). The ETV6-NTRK3 gene fusion encodes a chimeric protein tyrosine kinase that transforms NIH3T3 cells. Oncogene 19, 906–915.

    Article  PubMed  CAS  Google Scholar 

  • Xue, G., Restuccia, D.F., Lan, Q., Hynx, D., Dirnhofer, S., Hess, D., Ruegg, C., and Hemmings, B.A. (2012). Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-beta signaling axes. Cancer Discov. 2, 248–259.

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro, D.J., Liu, X.G., Lee, C.P., Nakagawara, A., Ikegaki, N., McGregor, L.M., Baylin, S.B., and Brodeur, G.M. (1997). Expression and function of Trk-C in favourable human neuroblastomas. Eur. J. Cancer 33, 2054–2057.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yoo-Jin Kim or Wook Jin.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Kim, M.S., Kim, G.M., Choi, YJ. et al. TrkC promotes survival and growth of leukemia cells through Akt-mTOR-Dependent Up-Regulation of PLK-1 and Twist-1. Mol Cells 36, 177–184 (2013). https://doi.org/10.1007/s10059-013-0061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-0061-6

Keywords

Navigation