Skip to main content
Log in

Tenascin-C produced by oxidized LDL-stimulated macrophages increases foam cell formation through toll-like receptor-4

  • Published:
Molecules and Cells

Abstract

Atherosclerosis is a chronic inflammatory disease in which both innate and adaptive immunity are involved. Although there have been major advances in the involvement of toll-like receptor 4 (TLR4) and CD36 in the initiation and development of this disease, detailed mechanisms remain unknown. Here, we show that tenascin-C (TN-C) can stimulate foam cell formation and this can be inhibited by a TLR4-blocking antibody or CD36 gene silencing. Our results identify TN-C-TLR4 activation as a common molecular mechanism in oxLDL-stimulated foam cell formation and atherosclerosis. In addition, CD36 is the major scavenger receptor responsible for the TN-C-mediated foam cell formation. Taken together, we have identified that TNC produced by oxLDL-stimulated macrophages increases foam cell formation through TLR4 and scavenger receptor CD36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amin, K., Lúdviksdóttir, D., Janson, C., Nettelbladt, O., Gudbjórnsson, B., Valtysdottir, S., Björnsson, E., Roomans, G., Boman, G., and Seveus, L. (2001). Inflammation and structural changes in the airways of patients with primary Sjögren’s syndrome. Respir. Med. 95, 904–910.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, J., Libby, P., and Hansson, G.K. (2010). Adaptive immunity and atherosclerosis. Clin. Immun. 134, 33–46.

    Article  CAS  Google Scholar 

  • Ashraf, M.Z., and Gupta, N. (2011). Scavenger receptors: implications in atherothrombotic disorders. Int. J. Biochem. Cell Biol. 43, 697–700.

    Article  PubMed  CAS  Google Scholar 

  • Chang, Y.C., Huang, K.X., Huang, A.C., Ho, Y.C., and Wang, C.J. (2006). Hibiscus anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages apoptosis. Food Chem. Toxicol. 44, 1015–1023.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann, R., and Chiquet, M. (2003). Tenascins: regulation and putative functions during pathological stress. J. Pathol. 200, 488–499.

    Article  PubMed  CAS  Google Scholar 

  • Feng, X., Zhang, Y., Xu, R., Xie, X., Tao, L., Gao, H., Gao, Y., He, Z., and Wang, H. (2010). Lipopolysaccharide up-regulates the expression of Fc [alpha]/[mu] receptor and promotes the binding of oxidized low-density lipoprotein and its IgM antibody complex to activated human macrophages. Atherosclerosis 208, 396–405.

    Article  PubMed  CAS  Google Scholar 

  • Hajjar, D.P., and Haberland, M.E. (1997). Lipoprotein trafficking in vascular cells. J. Biol. Chem. 272, 22975.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Hajjar, D.P., Febbraio, M., and Nicholson, A.C. (1997). Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J. Biol. Chem. 272, 21654.

    Article  PubMed  CAS  Google Scholar 

  • Hansson, G.K. (2005). Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695.

    Article  PubMed  CAS  Google Scholar 

  • Hoebe, K., Georgel, P., Rutschmann, S., Du, X., Mudd, S., Crozat, K., Sovath, S., Shamel, L., Hartung, T., and Zähringer, U. (2005). CD36 is a sensor of diacylglycerides. Nature 433, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Howell, K.W., Meng, X., Fullerton, D.A., Jin, C., Reece, T.B., and Cleveland Jr., J.C. (2011). Toll-like receptor 4 mediates oxidized LDL-induced macrophage differentiation to foam cells. J. Surg. Res. 171, 27–31.

    Article  Google Scholar 

  • Ishigaki, Y., Katagiri, H., Gao, J., Yamada, T., Imai, J., Uno, K., Hasegawa, Y., Kaneko, K., Ogihara, T., and Ishihara, H. (2008). Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Circulation 118, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Ito, T., Yamada, S., and Shiomi, M. (2004). Progression of coronary atherosclerosis relates to the onset of myocardial infarction in an animal model of spontaneous myocardial infarction (WHHLMI rabbits). Exp. Animals 53, 339–346.

    Article  CAS  Google Scholar 

  • Jiang, L., Wei, X., Yi, D., Xu, P., Liu, H., Chang, Q., Yang, S., Li, Z., Gao, H., and Hao, G. (2009). Synergistic effects of cyclic strain and Th1-like cytokines on tenascin-C production by rheumatic aortic valve interstitial cells. Clin. Exp. Immunol. 155, 216–223.

    Article  PubMed  CAS  Google Scholar 

  • Jovinge, S., Ares, M.P.S., Kallin, B., and Nilsson, J. (1996). Human monocytes/macrophages release TNF-α in response to ox-LDL. Arterioscler. Thromb. Vasc. Biol. 16, 1573–1579.

    Article  PubMed  CAS  Google Scholar 

  • Khan, Z.A., Cukiernik, M., Gonder, J.R., and Chakrabarti, S. (2004). Oncofetal fibronectin in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 45, 287.

    Article  PubMed  Google Scholar 

  • Kim, M., Sandra, S., Anna, M.P., Julia, I., Annette, T., Emma, C., Stefan, D., Nidhi, S., Masahide, K., Gertraud, O., et al. (2009). Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–781.

    Article  Google Scholar 

  • Lahoute, C., Herbin, O., Mallat, Z., and Tedgui, A. (2011). Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat. Rev. Cardiol. 8, 348–358.

    Article  PubMed  CAS  Google Scholar 

  • Libby, P. (2006) The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 508–519.

    Article  PubMed  Google Scholar 

  • Loots, M.A.M., Lamme, E.N., Zeegelaar, J., Mekkes, J.R., Bos, J.D., and Middelkoop, E. (1998). Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J. Invest. Dermatol. 111, 850–857.

    Article  PubMed  CAS  Google Scholar 

  • Midwood, K., Sacre, S., Piccinini, A.M., Inglis, J., Trebaul, A., Chan, E., Drexler, S., Sofat, N., Kashiwagi, M., and Orend, G. (2009). Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780.

    Article  PubMed  CAS  Google Scholar 

  • Midwood, K.S., Hussenet, T., Langlois, B., and Orend, G. (2011). Advances in tenascin-C biology. Cell. Mol. Life Sci. 68, 3175–3199.

    Article  PubMed  CAS  Google Scholar 

  • Munteanu, A., Taddei, M., Tamburini, I., Bergamini, E., Azzi, A., and Zingg, J.M. (2006). Antagonistic effects of oxidized low density lipoprotein and α-Tocopherol on CD36 scavenger receptor expression in monocytes. J. Biol. Chem. 281, 6489–6497.

    Article  PubMed  CAS  Google Scholar 

  • Podrez, E.A., Byzova, T.V., Febbraio, M., Salomon, R.G., Ma, Y., Valiyaveettil, M., Poliakov, E., Sun, M., Finton, P.J., and Curtis, B.R. (2007). Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat. Med. 13, 1086–1095.

    Article  PubMed  CAS  Google Scholar 

  • Ricciarelli, R., Zingg, J.M., and Azzi, A. (2000). Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation 102, 82–87.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, C.R., Stuart, L.M., Wilkinson, K., van Gils, J.M., Deng, J., Halle, A., Rayner, K.J., Boyer, L., Zhong, R., and Frazier, W.A. (2009). CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11, 155–161.

    Article  PubMed  Google Scholar 

  • Stuart, L.M., Deng, J., Silver, J.M., Takahashi, K., Tseng, A.A., Hennessy, E.J., Ezekowitz, R.A.B., and Moore, K.J. (2005). Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell Biol. 170, 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Ann. Rev. Immunol. 21, 335–376.

    Article  CAS  Google Scholar 

  • Tedgui, A., Owens III, A.P., and Mackman, N. (2011). Nobel prize in physiology or medicine. Arterioscler. Thromb. Vasc. Biol. 31, 2767–2768.

    Article  PubMed  CAS  Google Scholar 

  • Udalova, I.A., Ruhmann, M., Thomson, S., and Midwood, K.S. (2011). Expression and immune function of tenascin-C. Crit. Rev. Immunol. 31, 115–145.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, T., Hirata, M., Yoshikawa, Y., Nagafuchi, Y., and Toyoshima, H. (1985). Role of macrophages in atherosclerosis. Sequential observations of cholesterol-induced rabbit aortic lesion by the immunoperoxidase technique using monoclonal antimacrophage antibody. Lab. Invest. J. Tech. Methods Pathol. 53, 80.

    CAS  Google Scholar 

  • Xu, X.H., Shah, P.K., Faure, E., Equils, O., Thomas, L., Fishbein, M.C., Luthringer, D., Xu, X.P., Rajavashisth, T.B., and Yano, J. (2001). Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 104, 3103–3108.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Liu or Lihua Zhang.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Liu, R., He, Y., Li, B. et al. Tenascin-C produced by oxidized LDL-stimulated macrophages increases foam cell formation through toll-like receptor-4. Mol Cells 34, 35–41 (2012). https://doi.org/10.1007/s10059-012-0054-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0054-x

Keywords

Navigation