Skip to main content
Log in

Simvastatin promotes osteogenic differentiation of mouse embryonic stem cells via canonical Wnt/β-catenin signaling

  • Published:
Molecules and Cells

Abstract

Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, has been known to reduce cholesterol biosynthesis. However, recent studies demonstrate that simvastatin shows diverse cholesterol-independent functions including cellular differentiation. In this study, we investigated the stimulatory effect of simvastatin on the osteogenic differentiation of mouse embryonic stem cells (ESCs). The osteogenic effect of simvastatin was observed at relatively low doses (ranging from 1 nM to 200 nM). Incubation of ESCs in simvastatin-supplemented osteogenic medium significantly increased alkaline phosphatase (ALP) activity at day 7. The matrix mineralization was also augmented and demonstrated pivotal levels after 14 days incubation of simvastatin. Osteogenic differentiation of ESCs by simvastatin was determined by upregulation of the mRNA expression of runtrelated gene 2 (Runx2), osterix (OSX), and osteocalcin (OCN) as osteogenic transcription factors. Moreover, the increased protein expression of OCN, osteopontin (OPN), and collagen type I (Coll I) was assessed using Western blot analysis and immunocytochemistry. However, the blockage of canonical Wnt signaling by DKK-1 downregulated simvastatin-induced ALP activity and the mRNA expression of each osteogenic transcription factor. Furthermore, the β-catenin specific siRNA transfection decreased the protein levels of OCN, OPN, and Coll I. Collectively, these findings suggest that simvastatin enhances the differentiation of ESCs toward osteogenic lineage through activation of canonical Wnt/β-catenin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baek, K.H., Lee, W.Y., Oh, K.W., Tae, H.J., Lee, J.M., Lee, E.J., Han, J.H., Kang, M.I., Cha, B.Y., Lee, K.W., et al. (2005). The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells. J. Korean Med. Sci. 20, 438–444.

    Article  PubMed  CAS  Google Scholar 

  • Bielby, R.C., Boccaccini, A.R., Polak, J.M., and Buttery, L.D. (2004). In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng. 10, 1518–1525.

    PubMed  CAS  Google Scholar 

  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bratt-Leal, A.M., Carpenedo, R.L., and McDevitt, T.C. (2009). Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol. Prog. 25, 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Buttery, L.D., Bourne, S., Xynos, J.D., Wood, H., Hughes, F.J., Hughes, S.P., Episkopou, V., and Polak, J.M. (2001). Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Canalis, E., Economides, A.N., and Gazzerro, E. (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24, 218–235.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry, G.R., Yao, D., Smith, A., and Hussain, A. (2004). Osteogenic Cells Derived From Embryonic Stem Cells Produced Bone Nodules in Three-Dimensional Scaffolds. J. Biomed. Biotechnol. 2004, 203–210.

    Article  PubMed  Google Scholar 

  • Chen, P.Y., Sun, J.S., Tsuang, Y.H., Chen, M.H., Weng, P.W., and Lin, F.H. (2010). Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr. Res. 30, 191–199.

    Article  PubMed  CAS  Google Scholar 

  • Grebenová, D., Kuzelová, K., Smetana, K., Pluskalová, M., Cajthamlová, H., Marinov, I., Fuchs, O., Soucek, J., Jarolím, P., and Hrkal, Z. (2003). Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells. J. Photochem. Photobiol. B. 69, 71–85.

    Article  PubMed  Google Scholar 

  • Guo, A.J., Choi, R.C., Cheung, A.W., Chen, V.P., Xu, S.L., Dong, T.T., Chen, J.J., and Tsim, K.W. (2011). Baicalin, a Flavone, Induces the Differentiation of Cultured Osteoblasts: an action via the Wnt/beta-catenin signaling pathway. J. Biol. Chem. 286, 27882–27893.

    Article  PubMed  CAS  Google Scholar 

  • Harada, H., Tagashira, S., Fujiwara, M., Ogawa, S., Katsumata, T., Yamaguchi, A., Komori, T., and Nakatsuka, M. (1999). Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Biol. Chem. 274, 6972–6978.

    Article  PubMed  CAS  Google Scholar 

  • Heng, B.C., Cao, T., Stanton, L.W., Robson, P., and Olsen, B. (2004). Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J. Bone Miner. Res. 19, 1379–1394.

    Article  PubMed  CAS  Google Scholar 

  • Heo, J.S., and Lee, J.C. (2011). β-Catenin mediates cyclic strain-stimulated cardiomyogenesis in mouse embryonic stem cells through ROS-dependent and integrin-mediated PI3K/Akt pathways. J. Cell. Biochem. 112, 1880–1889.

    Article  PubMed  CAS  Google Scholar 

  • Kato, M., Patel, M.S., Levasseur, R., Lobov, I., Chang, B.H., Glass 2nd, D.A., Hartmann, C., Li, L., Hwang, T.H., Brayton, C.F., et al. (2002). Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Kern, B., Shen, J., Starbuck, M., and Karsenty, G. (2001). Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J. Biol. Chem. 276, 7101–7107.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.Y., Kim, S., Yun-Choi, H.S., and Jho, E.H. (2011). Wnt5a potentiates U46619-induced platelet aggregation via the PI3K/Akt pathway. Mol. Cells [Epub ahead of print].

  • Lin, C.L., Cheng, H., Tung, C.W., Huang, W.J., Chang, P.J., Yang, J.T., and Wang, J.Y. (2008). Simvastatin reverses high glucoseinduced apoptosis of mesangial cells via modulation of Wnt signaling pathway. Am. J. Nephrol. 28, 290–297.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, T., Matsunuma, A., Kawane, T., and Horiuchi, N. (2001). Simvastatin promotes osteoblast differentition and mineralization in MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 280, 874–877.

    Article  PubMed  CAS  Google Scholar 

  • Montagnani, A., Gonnelli, S., Cepollaro, C., Pacini, S., Campagna, M.S., Franci, M.B., Lucani, B., and Gennari, C. (2003). Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women: a 1-year longitudinal study. Bone 32, 427–433.

    Article  PubMed  CAS  Google Scholar 

  • Mundy, G., Garrett, R., Harris, S., Chan, J., Chen, D., Rossini, G., Boyce, B., Zhao, M., and Gutierrez, G. (1999). Stimulation of bone formation in vitro and in rodents by statins. Science 286, 1946–1949.

    Article  PubMed  CAS  Google Scholar 

  • Nusse, R. (2005). Wnt signaling in disease and in development. Cell Res. 15, 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Pagkalos, J., Cha, J.M., Kang, Y., Heliotis, M., Tsiridis, E., and Mantalaris, A. (2010). Simvastatin induces osteogenic differenttiation of murine embryonic stem cells. J. Bone Miner. Res. 25, 2470–2478.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, B.W., Belmonte, N., Vernochet, C., Ailhaud, G., and Dani, C. (2001). Compactin enhances osteogenesis in murine embryonic stem cells. Biochem. Biophys. Res. Commun. 284, 478–484.

    Article  PubMed  CAS  Google Scholar 

  • Rawadi, G., Vayssiere, B., Dunn, F., Baron, R., and Roman-Roman, S., (2003). BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J. Bone Miner. Res. 18, 1842–1853.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Gaspa, S., Nogues, X., Enjuanes, A., Monllau, J.C., Blanch, J., Carreras, R., Mellibovsky, L., Grinberg, D., Balcells, S., Díez-Perez, A., et al. (2007). Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J. Cell. Biochem. 101, 1430–1438.

    Article  PubMed  CAS  Google Scholar 

  • Sakoda, K., Yamamoto, M., Negishi, Y., Liao, J.K., Node, K., and Izumi, Y. (2006). Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J. Dent. Res. 85, 520–523.

    Article  PubMed  CAS  Google Scholar 

  • Song, C., Guo, Z., Ma, Q., Chen, Z., Liu, Z., Jia, H., and Dang, G. (2003). Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem. Biophys. Res. Commun. 308, 458–462.

    Article  PubMed  CAS  Google Scholar 

  • Sottile, V., Thomson, A., and McWhir, J. (2003). In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells 5, 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J.W., Xu, S.W., Yang, D.S., and Lv, R.K. (2007). Locally applied simvastatin promotes fracture healing in ovariectomized rat. Osteoporos. Int. 18, 1641–1650.

    Article  PubMed  Google Scholar 

  • Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Wang, Y., Li, X., Zhang, J., Mao, J., Li, Z., Zheng, J., Li, L., Harris, S., and Wu, D. (2004). The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol. Cell. Biol. 24, 4677–4684.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zhang, L., Tian, F., Han, D., Niu, J., and Liu, X. (2009). Effect of simvastatin on mRNA expressions of some components of Wnt signaling pathway in differentiation process of osteoblasts derived from BMSCs of rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 23, 1371–1375.

    PubMed  CAS  Google Scholar 

  • zur Nieden, N.I., Kempka, G., Rancourt, D.E., and Ahr, H.J. (2005). Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev. Biol. 5, 1–15.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Sun Heo.

About this article

Cite this article

Qiao, L.J., Kang, K.L. & Heo, J.S. Simvastatin promotes osteogenic differentiation of mouse embryonic stem cells via canonical Wnt/β-catenin signaling. Mol Cells 32, 437–444 (2011). https://doi.org/10.1007/s10059-011-0107-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0107-6

Keywords

Navigation