Skip to main content

Advertisement

Log in

Solution structure of antimicrobial peptide esculentin-1c from skin secretion of Rana esculenta

  • Published:
Molecules and Cells

Abstract

Granular glands in the skins of frogs synthesize and secrete a remarkably diverse range of peptides capable of antimicrobial activity. These anuran skin antimicrobial peptides are commonly hydrophobic, cationic and form an amphipathic α-helix in a membrane mimetic solution. Recently, they have been considered as useful target molecules for developing new antibiotics drugs. Esculentin-1c is a 46-amino acid residue peptide isolated from skin secretions of the European frog, Rana esculenta. It displays the most potent antimicrobial activity among bioactive molecules. Esculentin-1c has the longest amino acids among all antimicrobial peptides. The present study solved the solution structure of esculentin-1c in TFE/water by NMR, for the first time. We conclude that this peptide is comprised of three α-helices with each helix showing amphipathic characteristics, which seems to be a key part for permeating into bacterial membranes, thus presenting antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M.F., Lips, K.R., Knoop, F.C., Fritzsch, B., Miller, C., and Conlon, J.M. (2002). Antimicrobial peptides and protease inhibitors in the skin secretions of the crawfish frog, Rana areolata. Biochim. Biophys. Acta 1601, 55–63.

    CAS  PubMed  Google Scholar 

  • Amblard, M., Fehrentz, J.A., Martinez, J., and Subra, G. (2006). Methods and protocols of modern solid phase Peptide synthesis. Mol. Biotechnol. 33, 239–254.

    Article  CAS  PubMed  Google Scholar 

  • Barra, D., and Simmaco, M. (1995). Amphibian skin: a promising resource for antimicrobial peptides. Trends Biotechnol. 13, 205–209.

    Article  CAS  PubMed  Google Scholar 

  • Basir, Y.J., Knoop, F.C., Dulka, J., and Conlon, J.M. (2000). Multiple antimicrobial peptides and peptides related to brady-kinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim. Biophys. Acta 1543, 95–105.

    CAS  PubMed  Google Scholar 

  • Bechinger, B. (1997). Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156, 197–211.

    Article  CAS  PubMed  Google Scholar 

  • Boman, H.G. (1995). Peptide antibiotics and their role in innate immunity. Ann. Rev. Immunol. 13, 61–92.

    Article  CAS  Google Scholar 

  • Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., et al. (1998). Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921.

    Article  CAS  PubMed  Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    Article  CAS  PubMed  Google Scholar 

  • Dennison, S.R., Wallace, J., Harris, F., and Phoenix, D.A. (2005). Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein and Pep. Lett. 12, 31–39.

    Article  CAS  Google Scholar 

  • Gabay, J.E. (1994). Ubiquitous natural antibiotics. Science 264, 373–374.

    Article  CAS  PubMed  Google Scholar 

  • Gesell, J., Zasloff, M., and Opella, S.J. (1997). Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J. Biomol. NMR 9, 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Goraya, J., Knoop, F.C., and Conlon, J.M. (1999). Ranatuerin 1T: an antimicrobial peptide isolated from the skin of the frog, Rana temporaria. Peptides 20, 159–163.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R.E. (1997). Peptide antibiotics. Lancet 349, 418–422.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R.E.W., and Scott, M.G. (2000). The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. USA 97, 8856–8861.

    Article  CAS  PubMed  Google Scholar 

  • Jenssen, H., Hamill, P., and Hancock, R.E. (2006). Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, B.A., and Blevins, R.A. (1994). Nmr view — a computer-program for the visualization and analysis of Nmr data. J. Biomolecular Nmr. 4, 603–614.

    Article  CAS  Google Scholar 

  • Koczulla, A.R., and Bals, R. (2003). Antimicrobial peptides: current status and therapeutic potential. Drugs 63, 389–406.

    Article  CAS  PubMed  Google Scholar 

  • Mangoni, M.L., Fiocco, D., Mignogna, G., Barra, D., and Simmaco, M. (2003). Functional characterisation of the 1–18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides 24, 1771–1777.

    Article  CAS  PubMed  Google Scholar 

  • Mor, A., and Nicolas, P. (1994). The NH2-terminal alpha-helical domain 1–18 of dermaseptin is responsible for antimicrobial activity. J. Biol. Chem. 269, 1934–1939.

    CAS  PubMed  Google Scholar 

  • Morikawa, N., Hagiwara, K., and Nakajima, T. (1992). Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem. Biophys. Res. Commun. 189, 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Nascimento, A.C., Fontes, W., Sebben, A., and Castro, M.S. (2003). Antimicrobial peptides from anurans skin secretions. Protein Pept. Lett. 10, 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Nicolas, P., and Mor, A. (1995). Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol. 49, 277–304.

    Article  CAS  PubMed  Google Scholar 

  • Ponti, D., Mignogna, G., Mangoni, M.L., De Biase, D., Simmaco, M., and Barra, D. (1999). Expression and activity of cyclic and linear analogues of esculentin-1, an anti-microbial peptide from amphibian skin. Eur. J. Biochem. 263, 921–927.

    Article  CAS  PubMed  Google Scholar 

  • Reed, J., and Kinzel, V. (1993). Primary structure elements responsible for the conformational switch in the envelope glycoprotein gp120 from human immunodeficiency virus type 1: LPCR is a motif governing folding. Proc. Natl. Acad. Sci. USA 90, 6761–6765.

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi, A.C. (2002). Antimicrobial peptides from amphibian skin: an expanding scenario — Commentary. Curr. Opin. Chem. Biol. 6, 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Rozek, T., Wegener, K.L., Bowie, J.H., Olver, I.N., Carver, J.A., Wallace, J.C., and Tyler, M.J. (2000). The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis — the solution structure of aurein 1.2. Eur. J. Biochem. 267, 5330–5341.

    Article  CAS  PubMed  Google Scholar 

  • Shai, Y. (2002). Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 236–248.

    Article  CAS  PubMed  Google Scholar 

  • Simmaco, M., Mignogna, G., Barra, D., and Bossa, F. (1993). Novel antimicrobial peptides from skin secretion of the European frog Rana esculenta. FEBS Lett. 324, 159–161.

    Article  CAS  PubMed  Google Scholar 

  • Simmaco, M., Mignogna, G., Barra, D., and Bossa, F. (1994). Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J. Biol. Chem. 269, 11956–11961.

    CAS  PubMed  Google Scholar 

  • Simmaco, M., Mignogna, G., and Barra, D. (1998). Antimicrobial peptides from amphibian skin: what do they tell us. Biopolymers 47, 435–450.

    Article  CAS  PubMed  Google Scholar 

  • Sivaraman, T., Kumar, T.K., and Yu, C. (1996). Destabilisation of native tertiary structural interactions is linked to helix-induction by 2,2,2-trifluoroethanol in proteins. Int. J. Biol. Macromol. 19, 235–239.

    Article  CAS  PubMed  Google Scholar 

  • Sonnichsen, F.D., Van Eyk, J.E., Hodges, R.S., and Sykes, B.D. (1992). Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry 31, 8790–8798.

    Article  CAS  PubMed  Google Scholar 

  • Vanhoye, D., Bruston, F., Nicolas, P., and Amiche, M. (2003). Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur. J. Biochem. 270, 2068–2081.

    Article  CAS  PubMed  Google Scholar 

  • Vignal, E., Chavanieu, A., Roch, P., Chiche, L., Grassy, G., Calas, B., and Aumelas, A. (1998). Solution structure of the antimicrobial peptide ranalexin and a study of its interaction with perdeuterated dodecylphosphocholine micelles. Eur. J. Biochem. 253, 221–228.

    Article  CAS  PubMed  Google Scholar 

  • Wellings, D.A., and Atherton, E. (1997). Standard Fmoc protocols. Methods Enzymol. 289, 44–67.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D.S., and Sykes, B.D. (1994a). The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D.S., and Sykes, B.D. (1994b). Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363–392.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L., and Sykes, B.D. (1995). 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR 6, 135–140.

    Article  CAS  PubMed  Google Scholar 

  • Won, H.S., Park, S.H., Kim, H.E., Hyun, B., Kim, M., and Lee, B.J. (2002). Effects of a tryptophanyl substitution on the structure and antimicrobial activity of C-terminally truncated gaegurin 4. Eur. J. Biochem. 269, 4367–4374.

    Article  CAS  PubMed  Google Scholar 

  • Won, H.S., Jung, S.J., Kim, H.E., Seo, M.D., and Lee, B.J. (2004a). Systematic peptide engineering and structural characterization to search for the shortest antimicrobial peptide analogue of gaegurin 5. J. Biol. Chem. 279, 14784–14791.

    Article  CAS  PubMed  Google Scholar 

  • Won, H.S., Kim, S.S., Jung, S.J., Son, W.S., Lee, B., and Lee, B.J. (2004b). Structure activity relationships of antimicrobial peptides from the skin of Rana esculenta inhabiting in Korea. Mol. Cells 17, 469–476.

    CAS  PubMed  Google Scholar 

  • Won, H.S., Kang, S.J., and Lee, B.J. (2009). Action mechanism and structural requirements of the antimicrobial peptides, gaegurins. Biochim. Biophys. Acta 1788, 1620–1629.

    Article  CAS  PubMed  Google Scholar 

  • Wüthrich, K. (1986). NMR of proteins and nucleic acids (New York, USA: John Wiley & Sons).

    Google Scholar 

  • Zasloff, M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84, 5449–5453.

    Article  CAS  PubMed  Google Scholar 

  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature 415, 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Zasloff, M. (2003). Vernix, the newborn, and innate defense. Pediatr. Res. 53, 203–204.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Jin Lee.

About this article

Cite this article

Kang, SJ., Son, WS., Han, KD. et al. Solution structure of antimicrobial peptide esculentin-1c from skin secretion of Rana esculenta . Mol Cells 30, 435–441 (2010). https://doi.org/10.1007/s10059-010-0135-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0135-7

Keywords

Navigation