Skip to main content
Log in

The brain microenvironment and cancer metastasis

  • Minireview
  • Published:
Molecules and Cells

Abstract

The process of metastasis consists of a series of sequential, selective steps that few cells can complete. The outcome of cancer metastasis depends on multiple interactions between metastatic cells and homeostatic mechanisms that are unique to one or another organ microenvironment. The specific organ microenvironment determines the extent of cancer cell proliferation, angiogenesis, invasion and survival. Many lung cancer, breast cancer, and melanoma patients develop fatal brain metastases that do not respond to therapy. The blood-brain barrier is intact in and around brain metastases that are smaller than 0.25 mm in diameter. Although the blood-brain barrier is leaky in larger metastases, the lesions are resistant to many chemotherapeutic drugs. Activated astrocytes surround and infiltrate brain metastases. The physiological role of astrocytes is to protect against neurotoxicity. Our current data demonstrate that activated astrocytes also protect tumor cells against chemotherapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N.J., Rönnbäck, L., and Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Allen, N.J., and Barres, B.A. (2009). Neuroscience: glia - more than just brain glue. Nature 457, 675–677.

    Article  CAS  PubMed  Google Scholar 

  • Aukerman, S.L., Price, J.E., and Fidler, I.J. (1986). Different deficiencies in the prevention of tumorigenic-low-metastatic murine K-1735 melanoma cells from producing metastasis. J. Natl. Cancer Inst. 77, 915–924.

    CAS  PubMed  Google Scholar 

  • Brown, J.M., and Giaccia, A.J. (1998). The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416.

    CAS  PubMed  Google Scholar 

  • Bullock, T.H., Bennett, M.V., Johnston, D., Josephson, R., Marder, E., and Fields, R.D. (2005). Neuroscience. The neuron doctrine, redux. Science 310, 791–793.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gerstenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P., and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    Article  CAS  PubMed  Google Scholar 

  • Chalkley, H.W. (1943). Method for the quantitative morphologic analysis of tissues. J. Natl. Cancer Inst. 4, 47–53.

    Google Scholar 

  • Chen, L.W., Yung, K.L., and Chan, Y.S. (2005). Reactive astrocytes as potential manipulation targets in novel cell replacement therapy of Parkinson’s disease. Curr. Drug Targets 6, 821–833.

    Article  CAS  PubMed  Google Scholar 

  • Crooks, D.A., Scholtz, C.L., Vowles, G., Greenwald, S., and Evans, S. (1991). The glial reaction in closed head injuries. Neuropathol. Appl. Neurobiol. 17, 407–414.

    Article  CAS  PubMed  Google Scholar 

  • Ewing, J. (1928). Neoplastic Diseases, 6th eds., W. B. Saunders, (Philadelphia, USA).

    Google Scholar 

  • Feigin, I., Allen, L.B., Lipkin, L., and Gross, S.W. (1958). The endothelial hyperplasia of the cerebral blood vessels with brain tumors and its sarcomatous transformation. Cancer 11, 264–277.

    Article  CAS  PubMed  Google Scholar 

  • Felgenhauer, K. (1986). The blood-brain barrier redefined. J. Neurol. 233, 193–194.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N., and Henzel, W.J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–859.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I.J. (1973). Selection of successive tumour lines for metastasis. Nat. New Biol. 242, 148–149.

    CAS  PubMed  Google Scholar 

  • Fidler, I.J. (1990). Critical factors in the biology of human cancer metastasis: twenty-eighth GHA Clowes memorial award lecture. Cancer Res. 50, 6130–6138.

    CAS  PubMed  Google Scholar 

  • Fidler, I.J. (2003). The pathogenesis of cancer metastasis: the ’seed and soil’ revisited (Timeline). Nat. Rev. Cancer 3, 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I.J., and Kripke, M.E. (1977). Metastasis results from pre-existing variant cells within a malignant tumor. Science 197, 893–895.

    Article  CAS  PubMed  Google Scholar 

  • Fidler, I.J., and Talmadge, J.E. (1986). Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Res. 46, 5167–5171.

    CAS  PubMed  Google Scholar 

  • Fidler, I.J., Yano, S., Zhang, R.D., Fujimaki, T., and Bucana, C.D. (2002). The seed and soil hypothesis: vascularization and brain metastasis. Lancet Oncol. 3, 53–57.

    Article  CAS  PubMed  Google Scholar 

  • Fields, R.D., and Stevens-Graham, B. (2002). New insights into neuron-glia communication. Science 298, 556–562.

    Article  CAS  PubMed  Google Scholar 

  • Folkman, J. (1995). Clinical approaches of research on angiogenesis. N. Engl. J. Med. 333, 1757–1763.

    Article  CAS  PubMed  Google Scholar 

  • Fujimaki, T., Fan, D., Staroselsky, A.H., Gohji, K., Bucana, C.D., and Fidler, I.J. (1993). Critical factors regulating site-specific brain metastasis of murine melanomas. Int. J. Oncol. 3, 789–799.

    Google Scholar 

  • Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via a specific labeling of nuclear DNA fragmentation. J. Cell Biol.119, 493–501.

    Article  CAS  PubMed  Google Scholar 

  • Gay, P.C., Litchy, W.J., and Carcino, T.L. (1987). Brain metastasis in hypernephroma. J. Neurooncol. 5, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Gregoire, N. (1989). The blood-brain barrier. J. Neuroradiol. 16, 238–250.

    CAS  PubMed  Google Scholar 

  • Greig, N.H., Soncrant, T.T., Shetty, H.U., Momma, S., Smith, Q.R., and Rapoport, S.I. (1990). Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother. Pharmacol. 26, 263–268.

    Article  CAS  PubMed  Google Scholar 

  • Groothuis, D.R., Fischer, J.M., Lapin, G., Bigner, D.D., and Vick, N.A. (1982). Permeability of different experimental brain tumor models to horseradish peroxidase. J. Neuropathol. Exp. Neurol. 41, 164–185.

    Article  CAS  PubMed  Google Scholar 

  • Hart, I.R., Talmadge, J.E., and Fidler, I.J. (1981). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 41, 1281–1287.

    CAS  PubMed  Google Scholar 

  • Holash, J., Maisonpierre, P.C., Compton, D., Boland, P., Alexander, C.R., Zagzag, D., Yancopoulos, G.D., and Wiegand, S.J. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.

    Article  CAS  PubMed  Google Scholar 

  • Hu, F., Wang, R.Y., and Hsu, T.C. (1987). Clonal origin of metastasis in B16 murine melanoma: a cytogenetic study. J. Natl. Cancer Inst. 67, 947–956.

    Google Scholar 

  • Jain, R.K. (2001). Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Del. Rev. 46, 149–168.

    Article  CAS  Google Scholar 

  • Johansson, B.B. (1990). The physiology of the blood-brain barrier. Adv. Exp. Med. Biol. 274, 25–39.

    CAS  PubMed  Google Scholar 

  • Kanematsu, T., Matsumata, T., Takenaka, K., Yoshida, Y., Higashi, H., and Sugimachi, K. (1988). Clinical management of recurring hepatocellular carcinoma after primary resection. Br. J. Surg. 75, 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.J., Baker, C.H., Kitadia, Y., Nakamuyra, T., Kuwai, T., Sasaki, T., Langley, R., and Fidler, I.J. (2010). Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. In Proc. 101st Ann. Meeting of the Amer. Assoc. Cancer Res., 2010 Apr 17–21, Washington, DC. Abst nr 3428.

  • Landis, S.H., Murray, T., Bolden, S., and Wingo, P.A. (1998). Cancer statistics. CA Cancer J. Clin. 48, 6–29.

    Article  CAS  PubMed  Google Scholar 

  • Langley, R.R., and Fidler, I.J. (2007). Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev. 28, 297–321.

    Article  CAS  PubMed  Google Scholar 

  • Langley, R.R., Fan, D., Guo, L., Zhang, C., Lin, Q., Brantley, E.C., McCarty, J.H., and Fidler, I.J. (2009). Generation of an immortalized astrocyte cell line from H-2K b-tsA58 mice to study the role of astrocytes in brain metastasis. Int. J. Oncol. 35, 665–672.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Price, J.E., Fan., D., Zhang, R., Bucana, C.D., and Fidler, I.J. (1989). Correlation of growth capacity of human tumor cells in hard agarose with their in vivo proliferative capacity at specific metastatic sites. J. Natl. Cancer Inst. 81, 1406–1412.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Q., Balasubramanian, K.K., Fan, D., Kim, S.J., Guo, L., Wang, H., Bar-Eli, M., Aldape, K.D., and Fidler, I.J. (2010). Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia (in press).

  • Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–332.

    Article  CAS  PubMed  Google Scholar 

  • Mahesh, V.B., Dhandapani, K.M., and Brann, D.W. (2006). Role of astrocytes in reproduction and neuroprotection. Mol. Cell. Endocrinol. 246, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G. (2005). Neuroscience: the dark side of glia. Science 308, 778–781.

    Article  CAS  PubMed  Google Scholar 

  • Nagy, J.A., Morgan, E.S., Herzberg, K.T., Manseau, E.J., Dvorak, A.M., and Dvorak, H.F. (1995). Pathogenesis of ascites tumor growth: angiogenesis, vascular remodeling, and stroma formation in the peritoneal lining. Cancer Res. 55, 376–385.

    CAS  PubMed  Google Scholar 

  • Nicolson, G. (1988). Organ specificity of tumor metastasis: role of preferential adhesion, invasion, and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev. 7, 143–188.

    Article  CAS  PubMed  Google Scholar 

  • Norden, A.D., Wen, P.Y., and Kesari, S. (2005). Brain metastasis. Curr. Opin. Neurol. 18, 654–661.

    PubMed  Google Scholar 

  • Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573.

    Article  Google Scholar 

  • Patan, S. (1998). Tie1 and Tie2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc. Res. 56, 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Patan, S., Munn, L.L., and Jain, R.K. (1996). Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc. Res. 51, 260–272.

    Article  CAS  PubMed  Google Scholar 

  • Poste, G., and Fidler, I.J. (1980). The pathogenesis of cancer metastasis. Nature 283, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Risau, W. (1997). Mechanisms of angiogenesis. Nature 386, 671–674.

    Article  CAS  PubMed  Google Scholar 

  • Russ, J.C. (1989). Uses of the Euclidean distance map for the measurement of features in images. J. Comp. Assist. Miscrosc. 1, 343–375.

    Google Scholar 

  • Russ, J.C. (1995). The Image Processing Handbook, 2nd ed., (Boca Raton, USA: CRC Press), pp. 463–469.

    Google Scholar 

  • Sawaya, R., Bindal, R., and Lang, F.F. (2001). Metastatic brain tumors. In Brian Tumors, A.H. Kaye, and E.E. Laws, eds. (New York, USA: Churchill-Livingsone), pp. 999–1026.

    Google Scholar 

  • Schackert, G., and Fidler, I.J. (1988a). Development of in vivo models for studies of brain metastasis. Int. J. Cancer 41, 589–594.

    Article  CAS  PubMed  Google Scholar 

  • Schackert, G., and Fidler, I.J. (1988b). Site-specific metastasis of mouse melanomas and a fibrosarcoma in the brain or meninges of syngeneic animals. Cancer Res. 48, 3478–3484

    CAS  PubMed  Google Scholar 

  • Schackert, G., Simmons, R.D., Buzbee, T.M., Hume, D.A., and Fidler, I.J. (1988). Macrophage infiltration into experimental brain metastasis: occurrence through an intact blood-brain barrier. J. Natl. Cancer Inst. 80, 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  • Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., and Dvorak, H.F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985.

    Article  CAS  PubMed  Google Scholar 

  • Schlingemann, R.O., Rietveld, F.J., de Waal, R.M., Ferrone, S., and Ruiter, D.J. (1990). Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am. J. Pathol. 136, 1393–1405.

    CAS  PubMed  Google Scholar 

  • Shapiro, W.R., and Shapiro, J.R. (1986). Principles of brain tumor chemotherapy. Semin. Oncol. 1, 56–69.

    Google Scholar 

  • Sofroniew, M.V. (2005). Reactive astrocytes in neural repair and protection. Neuroscientist 11, 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, P.A., Hayakawa, K., Farrell, C.L., and Del Maestro, R.F. (1987). Quantitative study of microvessel ultrastructure in human peritumoral brain tissue: evidence for a blood-brain barrier defect. J. Neurosurg. 67, 697–705.

    Article  CAS  PubMed  Google Scholar 

  • Talmadge, J.E., and Fidler, I.J. (1982). Cancer metastasis is selective or random depending on the parent tumor population. Nature 27, 593–594.

    Article  Google Scholar 

  • Talmadge, J.E., and Fidler, I.J. (2010). AACR Centennial Series: The biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669.

    Article  CAS  PubMed  Google Scholar 

  • Talmadge, J.E., Wolman, S.R., and Fidler, I.J. (1982). Evidence for the clonal origin of spontaneous metastasis. Science 217, 361–363.

    Article  CAS  PubMed  Google Scholar 

  • Tannock, I.F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273.

    CAS  PubMed  Google Scholar 

  • Tarin, D., Price, J.E., Kettlewell, M.G.W., Souter, R.G., Vass, A.C., and Crossley, B. (1984). Mechanisms of human tumor metastasis studied in patients with peritoneouvenous shunts. Cancer Res. 44, 3584–3591.

    CAS  PubMed  Google Scholar 

  • Tomlinson, E. (1987). Theory and practice of site-specific drug delivery. Adv. Drug Deliv. Rev. 1, 187–198.

    Article  Google Scholar 

  • Tsukuda, T., Fouad, A., and Pickren, J.W. (1983). Central nervous system metastasis from breast carcinoma: autopsy study. Cancer 52, 2349–2354.

    Article  Google Scholar 

  • Unemori, E.N., Ferrara, N., Bauer, E.A., and Amento, E.P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell. Physiol. 153, 557–562.

    Article  CAS  PubMed  Google Scholar 

  • Viadana, E., Bross, I.D.J., and Pickren, J.W. (1978). The metastatic spread of cancers of the digestive system in man. Oncology 35, 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Weidner, N. (1998). Tumoral vascularity as a prognostic factor in cancer patients: the evidence continues to grow (Editorial). Am. J. Pathol. 184, 130–135.

    Article  Google Scholar 

  • Weiss, L. (1985). Principles of Metastasis (Orlando, USA: Academic Press).

    Google Scholar 

  • Yano, S., Shinohara, H., Herbst, R.S., Kuniyasu, H., Bucana, C.D., Ellis, L.M., Davis, D.W., McConkey, D.J., and Fidler, I.J. (2000). Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res. 260, 4959–4967.

    Google Scholar 

  • Zagzag, D., Goldenberg, M., and Brem, S. (1989). Angiogenesis and blood-brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain-tumor model. Am. J. Roentgenol. 153, 141–146.

    CAS  Google Scholar 

  • Zhang, R.D., Price, J.E., Schackert, G., Itoh, K., and Fidler, I.J. (1991). Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications of prognosis. Cancer Res. 51, 2029–2035.

    CAS  PubMed  Google Scholar 

  • Zhang, R.D., Price, J.E., Fujimaki, T., Bucana, C.D., and Fidler IJ.. (1992). Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice. Am. J. Pathol. 141, 1115–1124.

    CAS  PubMed  Google Scholar 

  • Zuelch, K.G. (1986). Brain tumors: their biology and pathology, 3rd eds., (Berlin, Germany: Springer-Verlag), pp. 480–498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaiah J. Fidler.

About this article

Cite this article

Fidler, I.J., Balasubramanian, K., Lin, Q. et al. The brain microenvironment and cancer metastasis. Mol Cells 30, 93–98 (2010). https://doi.org/10.1007/s10059-010-0133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0133-9

Keywords

Navigation