Skip to main content
Log in

14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1

  • Published:
Molecules and Cells

Abstract

The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 ζ and 14-3-3 σ on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-β1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-β1-mediated growth inhibition displayed increased expression of 14-3-3 ζ and decreased expression of 14-3-3 σ compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 σ or 14-3-3 ζ, we showed that 14-3-3 σ is required for TGF-β1-mediated growth inhibition whereas 14-3-3 ζ negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 ζ increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-β1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 ζ phosphorylation sites in Smad3 markedly reduced the 14-3-3 ζ-mediated inhibition of TGF-β1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 ζ in the suppression of TGF-β1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 σ or 14-3-3 ζ contributes to TGF-β1 resistance in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajpai, U., Sharma, R., Kausar, T., Dattagupta, S., Chattopadhayay, T.K., and Ralhan, R. (2008). Clinical significance of 14-3-3 zeta in human esophageal cancer. Int. J. Biol. Markers 23, 231–237.

    CAS  PubMed  Google Scholar 

  • Bhowmick, N.A., Ghiassi, M., Aakre, M., Brown, K., Singh, V., and Moses, H.L. (2003). TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc. Natl. Acad. Sci. USA 100, 15548–15523.

    Article  CAS  PubMed  Google Scholar 

  • Chelli, B., Lena, A., Vanacore, R., Pozzo, E.D., Costa, B., Rossi, L., Salvetti, A., Scatena, F., Ceruti, S., Abbracchio, M.P., et al. (2004). Peripherial benzodiazepine receptor ligands: mitochondrial transmembrane potential depolarization and apoptosis induction in rat C6 glioma cells. Biochem. Pharmacol. 68, 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  CAS  PubMed  Google Scholar 

  • Datto, M.B., Frederick, J.P., Pan, L., Borton, A.J., Zhuang, Y., and Wang, X.F. (1999). Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol. Cell. Biol. 19, 2495–2504.

    CAS  PubMed  Google Scholar 

  • Derynck, R., and Zhang, Y.E. (2003). Smad-dependent and Smadindependent pathways in TGF-beta family signaling. Nature 425, 465–471.

    Article  Google Scholar 

  • Hermeking, H., Lengauer, C., Polyak, K., He, T.C., Zhang, L., Thiagalingam, S., Kinzler, K.W., and Vogelstein, B. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Massagué, J., Blain, S.W., and Lo, R.S. (2000). TGF-beta signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309.

    Article  PubMed  Google Scholar 

  • Kowalik, T.F. (2002). Smad about E2F. TGF-beta repression of c-myc via a Smad7/E2F/p107 complex. Mol. Cell 10, 7–8.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Zhao, J., Du, Y., Park, H.R., Sun, S.Y., Bernal-Mizrachi, L., Aitken, A., Khuri, F.R., and Fu, H. (2008). Down-regulation of 14-3-3zeta suppresses anchorage-independent growth of lung cancer cells through anoikis activation. Proc. Natl. Acad. Sci. USA 105, 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Matsuura, I., Denissova, N.G., Wang, G., He, D., Long, J., and Liu, F. (2004). Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430, 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Matsuura, I., Wang, G., He, D., and Liu, F. (2005). Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. Biochemistry 44, 12546–12553.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki, K., Kitano, C., Murata, M., Sekimoto, G., Yoshida, K., Uemura, Y., Seki, T., Taketani, S., Fujisawa, J., and Okazaki, K. (2009). Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stage of human malignant cancer. Cancer Res. 69, 5321–5330.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, S.A., Li, Z., Jaya, D., Ballard, S., Ferrell, J., and Fu, H. (2009). 14-3-3zeta mediates resistance of diffuse large B cell lymphoma to an anthracycline-based chemotherapeutic regimen. J. Biol. Chem. 284, 22379–22389.

    Article  CAS  PubMed  Google Scholar 

  • Mils, V., Baldin, V., Goubin, F., Pinta, I., Papin, C., Waye, M., Eychene, A., and Ducommun, B. (2000). Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase. Oncogene 19, 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  • Moreira, J.M., Ohlsson, G., Rank, F.E., and Celis, J.E. (2005). Down-regulation of the tumor suppressor protein 14-3-3sigma is a sporadic event in cancer of the breast. Mol. Cell Proteomics 4, 555–569.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, D.K. (2009). The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19, 16–23.

    Article  CAS  PubMed  Google Scholar 

  • Munday, A.D., Berndt, M.C., and Mitchell, C.A. (2000). Phosphoinositide 3-kinase forms a complex with platelet membrane glycoprotein Ib-IX-V complex and 14-3-3zeta. Blood 96, 577–584.

    CAS  PubMed  Google Scholar 

  • Pear, W.S., Nolan, G.P., Scott, M.L., and Baltimore, D. (1993). Production of high-titer helper free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

    Article  CAS  PubMed  Google Scholar 

  • Rich, J.N., Zhang, M., Datto, M.B., Bigner, D.D., and Wang, X.F. (1999). Transforming growth factor-beta-mediated p15(INK4B) induction and growth inhibition in astrocytes is SMAD3 dependent and a pathway prominently altered in human glioma cell lines. J. Biol. Chem. 274, 35053–35058.

    Article  CAS  PubMed  Google Scholar 

  • Robson, C.N., Gnanapragasam, V., Byrne, R.L., Collins, A.T., and Neal, D.E. (1999). Transforming growth factor-beta1up-regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. J. Endocrinol. 160, 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Sekimoto, G., Matsuzaki, K., Yoshida, K., Mori, S., Murata, M., Seki, T., Matsui, H., Fujisawa, J., and Okazaki, K. (2007). Reversible Smad-dependent signaling between tumor suppression and oncogenesis. Cancer Res. 67, 5090–5096.

    Article  CAS  PubMed  Google Scholar 

  • Siegel, P.M., Shu, W., and Massagué, J. (2003). Mad upregulation and Id2 repression accompany transforming growth factor (TGF)-mediated epithelial cell growth suppression. J. Biol. Chem. 278, 35444–35450.

    Article  CAS  PubMed  Google Scholar 

  • Song, K., Wang, H., Krebs, T.L., and Danielpour, D. (2006). Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. EMBO J. 25, 58–69.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, Y. (2003). The 14-3-3 proteins: gene, gene expression, and function. Neurochem. Res. 28, 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  • Wakefield, L.M., and Roberts, A.B. (2002). TGF-beta signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Wicks, S.J., Lui, S., Abdel-Wahab, N., Mason, R.M., and Chantry, A. (2000). Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol. Cell. Biol. 20, 8103–8111.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Letterio, J.J., Lechleider, R.J., Chen, L., Hayman, R., Gu, H., Roberts, A.B., and Deng, C. (1999). Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J. 18, 1280–1291.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Wen, Y.Y., Zhao, R., Lin, Y.L., Fournier, K., Yang, H.Y., Qiu, Y., Diaz, J., Laronga, C., and Lee, M.H. (2006). DNA damage-induced protein 14-3-3 sigma inhibits protein kinase B/Akt activation and suppresses Akt-activated cancer. Cancer Res. 66, 3096–3105.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Chul Kim.

About this article

Cite this article

Hong, HY., Jeon, WK., Bae, EJ. et al. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1. Mol Cells 29, 305–309 (2010). https://doi.org/10.1007/s10059-010-0037-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0037-8

Keywords

Navigation