Skip to main content
Log in

Insulin-like growth factor-I induces androgen receptor activation in differentiating C2C12 skeletal muscle cells

  • Published:
Molecules and Cells

Abstract

The modulating effect of IGF-I on the regulation of AR gene expression and activation in skeletal muscle cells remains poorly understood. In this study, the effects of IGF-I treatment on AR induction and activation in the absence of AR ligands were examined. Differentiating C2C12 cells were treated with different concentrations (0–250 ng/ml) of IGF-I or for various periods of time (0–60 min) of 250 ng/ml IGF-I. Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent increase in total AR and phosphorylated AR (Ser 213). IGF-I treatment also led to significantly increased AR mRNA expression when compared with the control. The levels of skeletal α-actin and myogenin mRNA, known target genes of AR, were also significantly upregulated after 5 or 10 min of treatment with IGF-I. Confocal images revealed that IGF-I stimulated nuclear localization of AR in the absence of ligands. In addition, an electrophoretic mobility shift assay indicated that IGF-I stimulated the AR DNA binding activity in a time-dependent manner. The present results suggest that IGF-I stimulates the expression and activation of AR by ligand-independent mechanism in differentiating C2C12 mouse skeletal muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, G.R., and Haddad, F. (1996). The relationships among IGF-I, DNA content, and protein accumulation during skeletal muscle hypertrophy. J. Appl. Physiol. 81, 2509–2516.

    PubMed  CAS  Google Scholar 

  • Antonio, J., Wilson, J.D., and George, F.W. (1996). Effects of castration and androgen treatment on androgen receptor levels in rat skeletal muscle. J. Appl. Physiol. 87, 2016–2019.

    Google Scholar 

  • Brunn, G.J., Hudson, C.C., Sekulic, A., Williams, J.M., Hosoi, H., Houghton, P.J., Lawrence, J.C. Jr, and Abraham, R.T. (1997). Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99–101.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Zajac, J.D., and MacLean, H.E. (2005). Androgen regulation of satellite cell function. J. Endocrinol. 186, 21–31.

    Article  PubMed  CAS  Google Scholar 

  • Culig, Z., Hobisch, A., Cronauer, M.V., Radmayr, C., Trapman, J., Hittmair, A., Bartsch, G., and Klocker, H. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 54, 5474–5478.

    PubMed  CAS  Google Scholar 

  • Fanzani, A., Colombo, F., Giuliani, R., Preti, A., and Marchesini, S. (2006). Insulin-like growth favtor 1 signaling regulates cytosolic sialidase Neu2 expression during myoblast differentiation and hypertrophy. FEBS J. 273, 3709–3721.

    Article  PubMed  CAS  Google Scholar 

  • Frost, R.A., and Lang, C.H. (1999). Differential effects of insulin-like growth factor I (IGF-I) and IGF-binding protein-1 on protein metabolism in human skeletal muscle cells. Endocrinology 140, 3962–3970.

    Article  PubMed  CAS  Google Scholar 

  • Galvin, C.D., Hardiman, O., and Nolan, C.M. (2003). IGF-I receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol. Cell. Endocrinol. 200, 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J.I., and Clemmons, D.R. (1995). Insulin-like growth factors and their binding proteins: biological action. Endocr. Rev. 16, 3–34.

    PubMed  CAS  Google Scholar 

  • Lee, D.K. (2002). Androgen receptor enhances myogenin expression and accelerates differentiation. Biochem. Biophys. Res. Commun. 294, 408–413.

    Article  PubMed  CAS  Google Scholar 

  • Lee, W.J., McClung, J., Hand, G.A., and Carson, J.A. (2003a). Overload-induced androgen receptor expression in the aged hindlimb receiving nandrolone decanoate. J. Appl. Physiol. 94, 1153–1161.

    PubMed  CAS  Google Scholar 

  • Lee, W.J., Thompson, R.W., McClung, J.M., and Carson, J.A. (2003b). Regulation of androgen receptor expression at the onset of functional overload in rat plantaris muscle. Am J. Physiol. Regul. Integr. Comp. Physiol. 285, R1076–R1085.

    PubMed  CAS  Google Scholar 

  • Lin, H.K., Yeh, S., Kang, H.Y., and Chang, C. (2001). Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl. Acad. Sci. USA 98, 7200–7205.

    Article  PubMed  CAS  Google Scholar 

  • Lin, H.K., Hu, Y.C., Yang, L., Altuwaijri, S., Chen, Y.T., Kang, H.Y., and Chang, C. (2003). Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. J. Biol. Chem. 278, 50902–50907.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S., Liu, M., Epner, D.E., Tsai, S.Y., and Tsai, M.J. (1999). Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol. Endocrinol. 13, 376–384.

    Article  PubMed  CAS  Google Scholar 

  • MacLean, H.E., Chiu, W.S., Notini, A.J., Axell, A.M., Davey, R.A., McManus, J.F., Ma, C., Plant, D.R., Lynch, G.S., and Zajac, J.D. (2008). Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB J. 22, 2676–2689.

    Article  PubMed  CAS  Google Scholar 

  • McLellan, A.S., Kealey, T., and Langlands, K. (2006). An E box in the exon 1 promoter regulates insulin-like growth factor-I expression in differentiating muscle cells. Am J. Physiol. Cell Physiol. 291, C300–C307.

    Article  PubMed  CAS  Google Scholar 

  • Musaro, A., McCullagh, K.J., Naya, F.J., Olson, E.N., and Rosenthal, N. (1999). IGF-I induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400, 581–585.

    Article  PubMed  CAS  Google Scholar 

  • Nazareth, L.V., and Weigel, N.L. (1996). Activation of the human androgen receptor through a protein kinase A signaling pathway. J. Biol. Chem. 271, 19900–19907.

    Article  PubMed  CAS  Google Scholar 

  • Orio, F., Térouanne, B., Georget, V., Lumbroso, S., Avances, C., Siatka, C., and Sultan, C. (2002). Potential action of IGF-I and EGF on androgen receptor nuclear transfer and transactivation in normal and cancer human prostate cell lines. Mol. Cell. Endocrinol. 198, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Reinikainen, P., Palvimo, J.J., and Jänne, O.A. (1996). Effects of mitogens on androgen receptor-mediated transactivation. Endocrinology 137, 4351–4357.

    Article  PubMed  CAS  Google Scholar 

  • Rommel, C., Bodine, S.C., Clarke, B.A., Rossman, R., Nunez, L., Stitt, T.N., and Glass, D.J. (2001). Mediation of IGF-I-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/kt/GSK3 pathways. Nat. Cell. Biol. 3, 1009–1013.

    Article  PubMed  CAS  Google Scholar 

  • Roy, A.K., Tyagi, R.K., Song, C.S, Lavrovsky, Y., Ahn, S.C., Oh, T.S., and Chatterjee, B. (2001). Androgen receptor: structural domains and functional dynamics after ligand-receptor interaction. Ann. N Y Acad. Sci. 949, 44–57.

    Article  PubMed  CAS  Google Scholar 

  • Sadar, M.D. (1999). Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J. Biol. Chem. 274, 7777–7783.

    Article  PubMed  CAS  Google Scholar 

  • Seaton, A., Scullin, P., Maxwell, P.J., Wilson, C., Pettigrew, J., Gallagher, R., O’sullivan, J.M., Johnston, P.G., and Waugh, D.J. (2008). Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis 29, 1148–1156.

    Article  PubMed  CAS  Google Scholar 

  • Taneja, S.S., Ha, S., Swenson, N.K., Huang, H.Y., Lee, P., Melamed, J., Shapiro, E., Garabedian, M.J., and Logan, S.K. (2005). Cell-specific regulation of androgen receptor phosphorylation in vivo. J. Biol. Chem. 280, 40916–40924.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi, R.K., Lavrovsky, Y., Ahn, S.C., Song, S.C., Chatterjee, B., and Roy, A.K. (2000). Dynamics of intercellular movement and nucleocytoplasmic recycling of the ligand-activated androgen receptor in living cells. Mol. Endocrinol. 14, 1162–1174.

    Article  PubMed  CAS  Google Scholar 

  • Urban, R.J., Boldenburg, Y.H., Gilkison, C., Foxworth, J., Coggan, A.R., Wolfe, R.R., and Ferrando, A. (1995). Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J. Physiol. Endocrinol. Metab. 269, E820–E826.

    CAS  Google Scholar 

  • Wade, N. (1972). Anabolic steroids: doctors denounce them, but athletes aren’t listening. Science 176, 1399–1403.

    Article  PubMed  CAS  Google Scholar 

  • Wannenes, F., Caprio, M., Gatta, L., Fabbri, A., Bonini, S., and Moretti, C. (2008). Androgen receptor expression during C2C12 skeletal muscle cell line differentiation. Mol. Cell. Endocrinol. 292, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Wen, Y., Hu, M.C., Makino, K., Spohn, B., Bartholomeusz, G., Yan, D.H., and Hung, M.C. (2000). HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res. 60, 6841–6845.

    PubMed  CAS  Google Scholar 

  • Wu, J.D., Haugk, K., Woodke, L., Nelson, P., Coleman, I., and Plymate, S.R. (2006). Interaction of IGF-signaling and the androgen receptor in prostate cancer progression. J. Cell Biochem. 99, 392–401.

    Article  PubMed  CAS  Google Scholar 

  • Xu, L., Glass, C.K., and Rosenfeld, M.G. (2006). Coactivator and corepressor complexes in nuclear receptor function. Curr. Opin. Gent. Dev. 9, 140–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Jun Lee.

About this article

Cite this article

Kim, H.J., Lee, W.J. Insulin-like growth factor-I induces androgen receptor activation in differentiating C2C12 skeletal muscle cells. Mol Cells 28, 189–194 (2009). https://doi.org/10.1007/s10059-009-0118-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0118-8

Keywords

Navigation