Skip to main content
Log in

Biology of glioma cancer stem cells

  • Minireview
  • Published:
Molecules and Cells

Abstract

Gliomas, much like other cancers, are composed of a heterogeneous mix of neoplastic and non-neoplastic cells that include both native and recruited cells. There is extensive diversity among the tumor cells, with differing capacity for in vitro and in vivo growth, a property intimately linked to the cell’s differentiation status. Those cells that are undifferentiated, self-renewing, with the capacity for developing tumors (tumorigenic) cells are designated by some as cancer stem cells, because of the stem-like properties. These cells may be a critical therapeutic target. However the exact identity and cell(s) of origin of the so-called glioma cancer stem cell remain elusive. Here we review the current understanding of glioma cancer stem cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  • Amariglio, N., Hirshberg, A., Scheithauer, B.W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., Koren-Michowitz, M., Waldman, D., Leider-Trejo, L., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6, e1000029.

    Article  PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis, A., Leker, R.R., Soldner, F., Hoeppner, D.J., Ravin, R., Poser, S.W., Rueger, M.A., Bae, S.K., Kittappa, R., and McKay, R.D. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826.

    Article  PubMed  CAS  Google Scholar 

  • Bachoo, R.M., Maher, E.A., Ligon, K.L., Sharpless, N.E., Chan, S.S., You, M.J., Tang, Y., DeFrances, J., Stover, E., Weissleder, R., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Bajenaru, M.L., Zhu, Y., Hedrick, N.M., Donahoe, J., Parada, L.F., and Gutmann, D.H. (2002). Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol. Cell. Biol. 22, 5100–5113.

    Article  PubMed  CAS  Google Scholar 

  • Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006a). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760.

    Article  PubMed  CAS  Google Scholar 

  • Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A.B., Shi, Q., McLendon, R.E., Bigner, D.D., and Rich, J.N. (2006b). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848.

    Article  PubMed  CAS  Google Scholar 

  • Bao, S., Wu, Q., Li, Z., Sathornsumetee, S., Wang, H., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2008). Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 68, 6043–6048.

    Article  PubMed  CAS  Google Scholar 

  • Bar, E.E., Chaudhry, A., Lin, A., Fan, X., Schreck, K., Matsui, W., Piccirillo, S., Vescovi, A.L., DiMeco, F., Olivi, A., et al. (2007). Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25, 2524–2533.

    Article  PubMed  CAS  Google Scholar 

  • Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P.J., Aigner, L., Brawanski, A., Bogdahn, U., and Beier, C.P. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67, 4010–4015.

    Article  PubMed  CAS  Google Scholar 

  • Beier, D., Rohrl, S., Pillai, D.R., Schwarz, S., Kunz-Schughart, L.A., Leukel, P., Proescholdt, M., Brawanski, A., Bogdahn, U., Trampe-Kieslich, A., et al. (2008). Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res. 68, 5706–5715.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A., and Weinberg, R.A. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737.

    Article  PubMed  CAS  Google Scholar 

  • Carstensen, H., Juhler, M., Bogeskov, L., and Laursen, H. (2006). A report of nine newborns with congenital brain tumours. Childs Nerv. Syst. 22, 1427–1431.

    Article  PubMed  Google Scholar 

  • Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., and Wahl, G.M. (2006). Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344.

    Article  PubMed  CAS  Google Scholar 

  • Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J., and Maitland, N.J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951.

    Article  PubMed  CAS  Google Scholar 

  • Conheim, V. (1875). Congenitales, quergestreiftes muskelsarkom der nieren. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 65, 64–69.

    Article  Google Scholar 

  • Dahlstrand, J., Collins, V.P., and Lendahl, U. (1992). Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52, 5334–5341.

    PubMed  CAS  Google Scholar 

  • Dalerba, P., Cho, R.W., and Clarke, M.F. (2007). Cancer stem cells: models and concepts. Ann. Rev. Med. 58, 267–284.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, J., Imitola, J., and Kesari, S. (2008). Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas. Nat. Clin. Pract. 5, 393–404.

    CAS  Google Scholar 

  • Eyler, C.E., Foo, W.C., LaFiura, K.M., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2008). Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26, 3027–3036.

    Article  PubMed  CAS  Google Scholar 

  • Fidler, I.J., and Kripke, M.L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893–895.

    Article  PubMed  CAS  Google Scholar 

  • Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021.

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson, R.J., and Rich, J.N. (2007). Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat. Rev. 7, 733–736.

    CAS  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Harris, H. (2004). Tumour suppression: putting on the brakes. Nature 427, 201.

    Article  PubMed  CAS  Google Scholar 

  • Harris, H. (2005). A long view of fashions in cancer research. Bioessays 27, 833–838.

    Article  PubMed  Google Scholar 

  • Hemmati, H.D., Nakano, I., Lazareff, J.A., Masterman-Smith, M., Geschwind, D.H., Bronner-Fraser, M., and Kornblum, H.I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 100, 15178–15183.

    Article  PubMed  CAS  Google Scholar 

  • Holland, E.C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R.E., and Fuller, G.N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25, 55–57.

    Article  PubMed  CAS  Google Scholar 

  • Horbinski, C., Mintz, A., Engh, J., Lieberman, F., Hamilton, R.L., and Park, D.M. (2009). Post-therapeutic changes in the molecular profile of glioblastomas. J. Clin. Oncol. 27, No 15S, 93.

    Google Scholar 

  • Ignatova, T.N., Kukekov, V.G., Laywell, E.D., Suslov, O.N., Vrionis, F.D., and Steindler, D.A. (2002). Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39, 193–206.

    Article  PubMed  Google Scholar 

  • Jackson, E.L., Garcia-Verdugo, J.M., Gil-Perotin, S., Roy, M., Quinones-Hinojosa, A., VandenBerg, S., and Alvarez-Buylla, A. (2006). PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199.

    Article  PubMed  CAS  Google Scholar 

  • Joo, K.M., Kim, S.Y., Jin, X., Song, S.Y., Kong, D.S., Lee, J.I., Jeon, J.W., Kim, M.H., Kang, B.G., Jung, Y., et al. (2008). Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab. Invest. 88, 808–815.

    Article  PubMed  CAS  Google Scholar 

  • Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835.

    Article  PubMed  CAS  Google Scholar 

  • Kreisl, T.N., Kim, L., Moore, K., Duic, P., Royce, C., Stroud, I., Garren, N., Mackey, M., Butman, J.A., Camphausen, K., et al. (2009). Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 27, 740–745.

    Article  PubMed  CAS  Google Scholar 

  • Kripke, M.L., Gruys, E., and Fidler, I.J. (1978). Metastatic heterogeneity of cells from an ultraviolet light-induced murine fibrosarcoma of recent origin. Cancer Res. 38, 2962–2967.

    PubMed  CAS  Google Scholar 

  • Lagasse, E. (2008). Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther. 15, 136–142.

    Article  PubMed  CAS  Google Scholar 

  • Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648.

    Article  PubMed  CAS  Google Scholar 

  • Louis, D.N., Ohgaki, H., Wiestler, O.D., and Cavenee, W.K. (2007). WHO Classification of Tumours of the Central Nervous System; in World Health Organization Classification of Tumours, International Agency for Research on Cancer (IARC), Lyon.

    Google Scholar 

  • Marchuk, D.A., Saulino, A.M., Tavakkol, R., Swaroop, M., Wallace, M.R., Andersen, L.B., Mitchell, A.L., Gutmann, D.H., Boguski, M., and Collins, F.S. (1991). cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11, 931–940.

    Article  PubMed  CAS  Google Scholar 

  • Miele, L., Golde, T., and Osborne, B. (2006). Notch signaling in cancer. Curr. Mol. Med. 6, 905–918.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110.

    Article  PubMed  CAS  Google Scholar 

  • Odoux, C., Fohrer, H., Hoppo, T., Guzik, L., Stolz, D.B., Lewis, D.W., Gollin, S.M., Gamblin, T.C., Geller, D.A., and Lagasse, E. (2008). A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res. 68, 6932–6941.

    Article  PubMed  CAS  Google Scholar 

  • Ogden, A.T., Waziri, A.E., Lochhead, R.A., Fusco, D., Lopez, K., Ellis, J.A., Kang, J., Assanah, M., McKhann, G.M., Sisti, M.B., et al. (2008). Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62, 505–514; discussion 514–515.

    Article  PubMed  Google Scholar 

  • Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, T.D., Willhoite, A.R., and Gage, F.H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494.

    Article  PubMed  CAS  Google Scholar 

  • Park, D.M., Li, J., Okamoto, H., Akeju, O., Kim, S.H., Lubensky, I., Vortmeyer, A., Dambrosia, J., Weil, R.J., Oldfield, E.H., et al. (2007). N-CoR pathway targeting induces glioblastoma derived cancer stem cell differentiation. Cell Cycle 6, 467–470.

    PubMed  CAS  Google Scholar 

  • Park, D.M., Hoeppner, D.J., Ravin, R., Androutsellis-Theotokis, A., Miller, J., Park, M.J., Soeda, A., and McKay, R.D. (2008). SSEA-1 is expressed by glioblastoma-derived cancer stem cells and identifies the highly proliferative fraction. Society for Neuroscience 2008 Annual Meeting Abstract 654.21/DD2.

  • Peiffer, J., and Kleihues, P. (1999). Hans-Joachim Scherer (1906–1945), pioneer in glioma research. Brain Pathol. 9, 241–245.

    Article  PubMed  CAS  Google Scholar 

  • Quinones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., Romero-Rodriguez, R., Berger, M.S., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415–434.

    Article  PubMed  Google Scholar 

  • Quintana, E., Shackleton, M., Sabel, M.S., Fullen, D.R., Johnson, T.M., and Morrison, S.J. (2008). Efficient tumour formation by single human melanoma cells. Nature 456, 593–598.

    Article  PubMed  CAS  Google Scholar 

  • Ravin, R., Hoeppner, D.J., Munno, D.M., Carmel, L., Sullivan, J., Levitt, D.L., Miller, J.L., Athaide, C., Panchision, D.M., and McKay, R.D. (2008). Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3, 670–680.

    Article  PubMed  CAS  Google Scholar 

  • Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Rich, J.N., and Eyler, C.E. (2008). Cancer stem cells in brain tumor biology. Cold Spring Harbor symposia on quantitative biology 73, 411–420.

    PubMed  CAS  Google Scholar 

  • Rizzo, P., Osipo, C., Foreman, K., Golde, T., Osborne, B., and Miele, L. (2008). Rational targeting of Notch signaling in cancer. Oncogene 27, 5124–5131.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, J.M., and Jordan, C.T. (2009). The increasing complexity of the cancer stem cell paradigm. Science 324, 1670–1673.

    Article  PubMed  CAS  Google Scholar 

  • Samuelsen, S.O., Bakketeig, L.S., Tretli, S., Johannesen, T.B., and Magnus, P. (2006). Head circumference at birth and risk of brain cancer in childhood: a population-based study. Lancet Oncol. 7, 39–42.

    Article  PubMed  Google Scholar 

  • Schulenburg, A., Ulrich-Pur, H., Thurnher, D., Erovic, B., Florian, S., Sperr, W.R., Kalhs, P., Marian, B., Wrba, F., Zielinski, C.C., et al. (2006). Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer 107, 2512–2520.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q., Goderie, S.K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., and Temple, S. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828.

    PubMed  CAS  Google Scholar 

  • Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Spangrude, G.J., Heimfeld, S., and Weissman, I.L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62.

    Article  PubMed  CAS  Google Scholar 

  • Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996.

    Article  PubMed  CAS  Google Scholar 

  • Taipale, J., and Beachy, P.A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Tohyama, T., Lee, V.M., Rorke, L.B., Marvin, M., McKay, R.D., and Trojanowski, J.Q. (1992). Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab. Invest. 66, 303–313.

    PubMed  CAS  Google Scholar 

  • Uchida, N., Buck, D.W., He, D., Reitsma, M.J., Masek, M., Phan, T.V., Tsukamoto, A.S., Gage, F.H., and Weissman, I.L. (2000). Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720–14725.

    Article  PubMed  CAS  Google Scholar 

  • Uhrbom, L., Dai, C., Celestino, J.C., Rosenblum, M.K., Fuller, G.N., and Holland, E.C. (2002). Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 62, 5551–5558.

    PubMed  CAS  Google Scholar 

  • Valtz, N.L., Hayes, T.E., Norregaard, T., Liu, S.M., and McKay, R.D. (1991). An embryonic origin for medulloblastoma. New Biol. 3, 364–371.

    PubMed  CAS  Google Scholar 

  • Virchow, R. (1858). Cellular Pathology, Berlin.

  • Vredenburgh, J.J., Desjardins, A., Herndon, J.E., 2nd, Marcello, J., Reardon, D.A., Quinn, J.A., Rich, J.N., Sathornsumetee, S., Gururangan, S., Sampson, J., et al. (2007). Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Sakariassen, P.O., Tsinkalovsky, O., Immervoll, H., Boe, S.O., Svendsen, A., Prestegarden, L., Rosland, G., Thorsen, F., Stuhr, L., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer 122, 761–768.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X., Curtin, J., Xiong, Y., Liu, G., Waschsmann-Hogiu, S., Farkas, D.L., Black, K.L., and Yu, J.S. (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392–9400.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Romero, M.I., Ghosh, P., Ye, Z., Charnay, P., Rushing, E.J., Marth, J.D., and Parada, L.F. (2001). Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes. Dev. 15, 859–876.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Guignard, F., Zhao, D., Liu, L., Burns, D.K., Mason, R.P., Messing, A., and Parada, L.F. (2005a). Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Harada, T., Liu, L., Lush, M.E., Guignard, F., Harada, C., Burns, D.K., Bajenaru, M.L., Gutmann, D.H., and Parada, L.F. (2005b). Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132, 5577–5588.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deric M. Park.

About this article

Cite this article

Park, D.M., Rich, J.N. Biology of glioma cancer stem cells. Mol Cells 28, 7–12 (2009). https://doi.org/10.1007/s10059-009-0111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0111-2

Keywords

Navigation