Skip to main content

Advertisement

Log in

Intratumoral patterns of clonal evolution in gliomas

  • ORIGINAL ARTICLE
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Few studies have explored the patterns of clonal evolution in gliomas. Here, we investigate the cytogenetic patterns of intratumoral clonal evolution of gliomas and their impact on tumor histopathology and patient survival. Cytogenetic analysis of 90 gliomas was performed in individual tumor cells (>200 cells/tumor) using multicolor (N = 16 probes) interphase—FISH. Overall, chromosome gains were more frequent than chromosome losses. Gains of chromosome 7 and/or EGFR amplification were detected in 91% of the cases, whereas del(9p21) (77%) and del(10q23) (78%) were the most frequent chromosome losses. Virtually, all cases (99%) showed ≥2 tumor cell clones, with higher numbers among high- versus low-grade gliomas (p = 0.001). Nine different cytogenetic patterns were found in the ancestral tumor clones. In most gliomas, ancestral clones showed abnormalities of chromosome 7, 9p, and/or 10q and cytogenetic evolution consisted of acquisition of additional abnormalities followed by tetraploidization. Conversely, early tetraploidization was associated with low-grade astrocytomas—2/3 pilocytic and 3/6 grade II diffuse astrocytomas—and combined loss of 1p36/19q13 with oligodendrogliomas, respectively; both aberrations were associated with a better patient outcome (p = 0.03). Overall, our results support the existence of different pathways of intratumoral evolution in gliomas

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miller CR, Perry A (2007) Glioblastoma. Arch Pathol Lab Med 131:397–406

    PubMed  Google Scholar 

  2. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108

    Article  PubMed  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumours of the central nervous system. IARC, Lyon

    Google Scholar 

  4. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN et al (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  CAS  PubMed  Google Scholar 

  5. Wolff JE, Berrak S, Koontz Webb SE, Zhang M (2008) Nitrosourea efficacy in high-grade glioma: a survival gain analysis summarizing 504 cohorts with 24193 patients. J Neurooncol 88:57–63

    Article  PubMed  Google Scholar 

  6. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  7. Burton EC, Lamborn KR, Feuerstein BG, Prados M, Scott J et al (2002) Genetic aberrations defined by comparative genomic hybridization distinguish long-term from typical survivors of glioblastoma. Cancer Res 62:6205–6210

    CAS  PubMed  Google Scholar 

  8. Fuller CE, Schmidt RE, Roth KA, Burger PC, Scheithauer BW et al (2003) Clinical utility of fluorescence in situ hybridization (FISH) in morphologically ambiguous gliomas with hybrid oligodendroglial/astrocytic features. J Neuropathol Exp Neurol 62:1118–1128

    PubMed  Google Scholar 

  9. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  CAS  PubMed  Google Scholar 

  10. Kramar F, Zemanova Z, Michalova K, Babicka L, Ransdorfova S et al (2007) Cytogenetic analyses in 81 patients with brain gliomas: correlation with clinical outcome and morphological data. J Neurooncol 84:201–211

    Article  PubMed  Google Scholar 

  11. Mizoguchi M, Betensky RA, Batchelor TT, Bernay DC, Louis DN et al (2006) Activation of STAT3, MAPK, and AKT in malignant astrocytic gliomas: correlation with EGFR status, tumor grade, and survival. J Neuropathol Exp Neurol 65:1181–1188

    Article  CAS  PubMed  Google Scholar 

  12. Homma T, Fukushima T, Vaccarella S, Yonekawa Y, Di Patre PL et al (2006) Correlation among pathology, genotype, and patient outcomes in glioblastoma. J Neuropathol Exp Neurol 65:846–854

    Article  CAS  PubMed  Google Scholar 

  13. Korshunov A, Sycheva R, Golanov A (2005) The prognostic relevance of molecular alterations in glioblastomas for patients age<50 years. Cancer 104:825–832

    Article  CAS  PubMed  Google Scholar 

  14. Jeon YK, Park K, Park CK, Paek SH, Jung HW et al (2007) Chromosome 1p and 19q status and p53 and p16 expression patterns as prognostic indicators of oligodendroglial tumors: a clinicopathological study using fluorescence in situ hybridization. Neuropathology 27:10–20

    Article  PubMed  Google Scholar 

  15. Walker C, du Plessis DG, Joyce KA, Machell Y, Thomson-Hehir J et al (2003) Phenotype versus genotype in gliomas displaying inter- or intratumoral histological heterogeneity. Clin Cancer Res 9:4841–4851

    CAS  PubMed  Google Scholar 

  16. Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD et al (2005) Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 102:5814–9

    Article  CAS  PubMed  Google Scholar 

  17. Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG et al (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63:1602–1607

    CAS  PubMed  Google Scholar 

  18. Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA (2002) Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet 135:147–159

    Article  CAS  PubMed  Google Scholar 

  19. Wiltshire RN, Herndon JE 2nd, Lloyd A, Friedman HS, Bigner DD et al (2004) Comparative genomic hybridization analysis of astrocytomas: prognostic and diagnostic implications. J Mol Diagn 6:166–179

    CAS  PubMed  Google Scholar 

  20. Fuller CE, Wang H, Zhang W, Fuller GN, Perry A (2002) High-throughput molecular profiling of high-grade astrocytomas: the utility of fluorescence in situ hybridization on tissue microarrays (TMA-FISH). J Neuropathol Exp Neurol 61:1078–1084

    CAS  PubMed  Google Scholar 

  21. Cowell JK, Matsui S, Wang YD, LaDuca J, Conroy J et al (2004) Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme. Cancer Genet Cytogenet 151:36–51

    Article  CAS  PubMed  Google Scholar 

  22. Kamiryo T, Tada K, Shiraishi S, Shinojima N, Nakamura H et al (2002) Analysis of homozygous deletion of the p16 gene and correlation with survival in patients with glioblastoma multiforme. J Neurosurg 96:815–822

    Article  CAS  PubMed  Google Scholar 

  23. Okada Y, Hurwitz EE, Esposito JM, Brower MA, Nutt CL et al (2003) Selection pressures of TP53 mutation and microenvironmental location influence epidermal growth factor receptor gene amplification in human glioblastomas. Cancer Res 63:413–416

    CAS  PubMed  Google Scholar 

  24. Ueki K, Nishikawa R, Nakazato Y, Hirose T, Hirato J et al (2002) Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res 8:196–201

    CAS  PubMed  Google Scholar 

  25. Liu L, Ichimura K, Pettersson EH, Goike HM, Collins VP (2000) The complexity of the 7p12 amplicon in human astrocytic gliomas: detailed mapping of 246 tumors. J Neuropathol Exp Neurol 59:1087–1093

    CAS  PubMed  Google Scholar 

  26. Backlund LM, Nilsson BR, Goike HM, Schmidt EE, Liu L et al (2003) Short postoperative survival for glioblastoma patients with a dysfunctional Rb1 pathway in combination with no wild-type PTEN. Clin Cancer Res 9:4151–4158

    PubMed  Google Scholar 

  27. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  CAS  PubMed  Google Scholar 

  28. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  CAS  PubMed  Google Scholar 

  29. Reifenberger J, Ring GU, Gies U, Cobbers L, Oberstrass J et al (1996) Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol 55:822–831

    Article  CAS  PubMed  Google Scholar 

  30. Fulci G, Ishii N, Maurici D, Gernert KM, Hainaut P et al (2002) Initiation of human astrocytoma by clonal evolution of cells with progressive loss of p53 functions in a patient with a 283H TP53 germ-line mutation: evidence for a precursor lesion. Cancer Res 62:2897–2905

    CAS  PubMed  Google Scholar 

  31. Sayagues JM, Tabernero MD, Maillo A, Espinosa A, Rasillo A et al (2004) Intratumoral patterns of clonal evolution in meningiomas as defined by multicolor interphase fluorescence in situ hybridization (FISH): is there a relationship between histopathologically benign and atypical/anaplastic lesions? J Mol Diagn 6:316–325

    PubMed  Google Scholar 

  32. Harada K, Nishizaki T, Ozaki S, Kubota H, Ito H et al (1998) Intratumoral cytogenetic heterogeneity detected by comparative genomic hybridization and laser scanning cytometry in human gliomas. Cancer Res 58:4694–4700

    CAS  PubMed  Google Scholar 

  33. Wemmert S, Romeike BF, Ketter R, Steudel WI, Zang KD et al (2006) Intratumoral genetic heterogeneity in pilocytic astrocytomas revealed by CGH-analysis of microdissected tumor cells and FISH on tumor tissue sections. Int J Oncol 28:353–360

    PubMed  Google Scholar 

  34. Lopez-Gines C, Cerda-Nicolas M, Gil-Benso R, Pellin A, Lopez-Guerrero JA et al (2005) Association of chromosome 7, chromosome 10 and EGFR gene amplification in glioblastoma multiforme. Clin Neuropathol 24:209–218

    CAS  PubMed  Google Scholar 

  35. Necesalova E, Vranova V, Kuglik P, Cejpek P, Jarosova M et al (2007) Incidence of the main genetic markers in glioblastoma multiforme is independent of tumor topology. Neoplasma 54:212–218

    CAS  PubMed  Google Scholar 

  36. Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970

    CAS  PubMed  Google Scholar 

  37. McLendon RE, Turner K, Perkinson K, Rich J (2007) Second messenger systems in human gliomas. Arch Pathol Lab Med 131:1585–1590

    CAS  PubMed  Google Scholar 

  38. Scaltriti M, Baselga J (2006) The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12:5268–5272

    Article  CAS  PubMed  Google Scholar 

  39. Li L, Ross AH (2007) Why is PTEN an important tumor suppressor? J Cell Biochem 102:1368–1374

    Article  CAS  PubMed  Google Scholar 

  40. Hlobilkova A, Ehrmann J, Sedlakova E, Krejci V, Knizetova P et al (2007) Could changes in the regulation of the PI3K/PKB/Akt signaling pathway and cell cycle be involved in astrocytic tumor pathogenesis and progression? Neoplasma 54:334–341

    CAS  PubMed  Google Scholar 

  41. Rao RD, James CD (2004) Altered molecular pathways in gliomas: an overview of clinically relevant issues. Semin Oncol 31:595–604

    Article  CAS  PubMed  Google Scholar 

  42. Ohtani N, Yamakoshi K, Takahashi A, Hara E (2004) The p16INK4a-RB pathway: molecular link between cellular senescence and tumor suppression. J Med Invest 51:146–153

    Article  PubMed  Google Scholar 

  43. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  CAS  PubMed  Google Scholar 

  44. Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG (2008) Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol 67:878–887

    Article  CAS  PubMed  Google Scholar 

  45. Jendrossek V, Kugler W, Erdlenbruch B, Eibl H, Lakomek M (2001) Induction of differentiation and tetraploidy by long-term treatment of C6 rat glioma cells with erucylphosphocholine. Int J Oncol 19:673–680

    CAS  PubMed  Google Scholar 

  46. Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Yeh N, Zhu XH, Leversha M, Cordon-Cardo C et al (2007) Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1). EMBO J 26:4683–4693

    Article  CAS  PubMed  Google Scholar 

  48. Tews B, Felsberg J, Hartmann C, Kunitz A, Hahn M et al (2006) Identification of novel oligodendroglioma-associated candidate tumor suppressor genes in 1p36 and 19q13 using microarray-based expression profiling. Int J Cancer 119:792–800

    Article  CAS  PubMed  Google Scholar 

  49. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M (2005) Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res 11:1119–1128

    CAS  PubMed  Google Scholar 

  50. Weller M, Berger H, Hartmann C, Schramm J, Westphal M et al (2007) Combined 1p/19q loss in oligodendroglial tumors: predictive or prognostic biomarker? Clin Cancer Res 13:6933–6937

    Article  CAS  PubMed  Google Scholar 

  51. Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM et al (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66:9852–9861

    Article  CAS  PubMed  Google Scholar 

  52. Felsberg J, Erkwoh A, Sabel MC, Kirsch L, Fimmers R et al (2004) Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival. Brain Pathol 14:121–130

    Article  CAS  PubMed  Google Scholar 

  53. Jenkins RB, Curran W, Scott CB, Cairncross G (2001) Pilot evaluation of 1p and 19q deletions in anaplastic oligodendrogliomas collected by a national cooperative cancer treatment group. Am J Clin Oncol 24:506–508

    Article  CAS  PubMed  Google Scholar 

  54. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    CAS  PubMed  Google Scholar 

  55. Qu M, Olofsson T, Sigurdardottir S, You C, Kalimo H et al (2007) Genetically distinct astrocytic and oligodendroglial components in oligoastrocytomas. Acta Neuropathol 113:129–136

    Article  CAS  PubMed  Google Scholar 

  56. Reddy KS (2008) Assessment of 1p/19q deletions by fluorescence in situ hybridization in gliomas. Cancer Genet Cytogenet 184:77–86

    Article  CAS  PubMed  Google Scholar 

  57. Jones DT, Ichimura K, Liu L, Pearson DM, Plant K et al (2006) Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. J Neuropathol Exp Neurol 65:1049–1058

    Article  CAS  PubMed  Google Scholar 

  58. Lima-Ramos V, Pacheco-Figueiredo L, Costa S, Pardal F, Silva A et al (2008) TP53 codon 72 polymorphism in susceptibility, overall survival, and adjuvant therapy response of gliomas. Cancer Genet Cytogenet 180:14–19

    Article  CAS  PubMed  Google Scholar 

  59. Chang Y, Berenson JR, Wang Z, Deuel TF (2006) Dominant negative pleiotrophin induces tetraploidy and aneuploidy in U87MG human glioblastoma cells. Biochem Biophys Res Commun 351:336–339

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by grants from FCT (Portuguese Foundation for Science and Technology, PhD fellowships SFRH/BD/11820/2003 and SFRH/BD/23086/2005), FCG (Portuguese Calouste Gulbenkian Foundation, Project Ref. 68708) and Spanish Network of Cancer Research Centers (RD06/0020/0035; RTICC; Instituto de Salud Carlos III, Ministerio of Science and Innovation, Madrid, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dolores Tabernero.

Additional information

Maria Celeste Lopes and Alberto Orfao: both authors have equally contributed to this work and they should be both considered as last authors.

Electronic supplementary material

Supplementary Fig. 1

Detailed information about the hypothetical pathways of intratumoral clonal evolution of gliomas (n = 90) defined on the basis of the cytogenetic patterns detected for the 16 different chromosome probes analyzed. In this figure, different colored rectangles (and horizontal bars) identify the ancestral tumor cell clone and the subsequent second, third, and fourth clones reflecting more advanced stages of clonal evolution, respectively; all cases in the second and subsequent third and fourth clones also shared the abnormalities of the previous clones. For each cytogenetic pattern its frequency among all gliomas analyzed, is shown. According to the International System for Human Cytogenetic Nomenclature ISCN 2005 Cytogenetic nomenclature for iFISH correspond to: nul9p: nuc ish 9p21 (p16,INK4Ax0; p14,ARFx0; p15,INK4Bx0); −1p: nuc ish 1p36 (TP73x1; EGTL3x1); −1q: nuc ish 1q25 (ANGPTL1x1; ABL2x1); −7p: nuc ish 7p12 (EGFRx1); −7: nuc ish 7cen (D7Z1x1); −7q: nuc ish 7q31 (ELNx1); −9p: nuc ish 9p21 (p16,INK4Ax1; p14,ARFx1; p15,INK4Bx1); −9: nuc ish 9cen (9p11q11x1); −9q: nuc ish 9q34 (ABLx1); −10: nuc ish 10cen (10p11.1q11.1x1); −10q: nuc ish 10q23 (PTENx1); −13q: nuc ish 13q14 (RB1 x1); −17p: nuc ish 17p13 (TP53x1); −19p: nuc ish 19p13 (ZNF44x1; ZK1x1; MAFFZB1x1); −19q: nuc ish 19q13 (GLTSCR1x1; GLTSCR2x1; CRXx1); −22q: nuc ish 22q11.2 (BCRx1); +1p: nuc ish 1p36 (TP73x3; EGTL3x3);+1q: nuc ish 1q25 (ANGPTL1x3; ABL2x3);+7p: nuc ish 7p12 (EGFRx3); +7: nuc ish 7cen (D7Z1x3); +7q: nuc ish 7q31 (ELNx3); +9p: nuc ish 9p21 (p16,INK4Ax3; p14,ARFx3; p15,INK4Bx3); +9: nuc ish 9cen (9p11q11x3); +9q: nuc ish 9q34 (ABLx3); +10: nuc ish 10cen (10p11.1q11.1x3); +10q: nuc ish 10q23 (PTENx3); +13q: nuc ish 13q14 (RB1x3); +17p: nuc ish 17p13 (TP53x3); +19p: nuc ish 19p13 (ZNF44x3; ZK1x3; MAFFZB1x3); +19q: nuc ish 19q13 (GLTSCR1x3; GLTSCR2x3; CRXx3);+22q: nuc ish 22q11.2 (BCRx3); amp7p: nuc ish amp (EGFR) (JPEG 1941 kb)

Supplementary Table 1

Commercially available interphase fluorescence in situ hybridization (iFISH) probes directed against specific gene locus which were systematically applied to the study of glioma tumors (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vital, A.L., Tabernero, M.D., Crespo, I. et al. Intratumoral patterns of clonal evolution in gliomas. Neurogenetics 11, 227–239 (2010). https://doi.org/10.1007/s10048-009-0217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-009-0217-x

Keywords

Navigation