Skip to main content
Log in

Characterization of novel CAPN3 isoforms in white blood cells: an alternative approach for limb-girdle muscular dystrophy 2A diagnosis

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder caused by mutations in the CAPN3 gene. Its definitive diagnosis is laborious, since the clinical phenotype is often similar to other types of muscular dystrophy and since the CAPN3 gene encompasses a large genomic region with more than 300 pathogenic mutations described to date. In fact, it is estimated that nearly 25% of the cases with a phenotype suggestive of LGMD2A do not have mutations in the CAPN3 gene and that, in up to 22% of the cases, only one mutation is identified. In the present work, we have characterised CAPN3 messenger RNA (mRNA) expression in peripheral blood, and we have performed a retrospective diagnostic study with 26 LGMD2A patients, sequencing a transcript of CAPN3 present in white blood cells (WBCs). The 25% of the mutations presented in this paper (7/28) act modifying pre-mRNA splicing of the CAPN3 transcript, including the first deep-intronic mutation described to date in the CAPN3 gene. Our results determine that the sequencing of CAPN3 transcripts present in WBCs could be applied as a new approach for LGMD2A diagnosis. This method improves and simplifies diagnosis, since it combines the advantages of mRNA analysis in a more accessible and rapidly regenerated tissue. However, the lack of exon 15 in the CAPN3 isoforms present in blood, and the presence of mRNA degradation make it necessary to combine mRNA and DNA analyses in some specific cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Paula F, Vainzof M, Passos-Bueno MR, de Cassia M Pavanello R, Matioli SR, VB Anderson L, Nigro V, Zatz M (2002) Clinical variability in calpainopathy: what makes the difference? Eur J Hum Genet 10:825–832

    Article  PubMed  Google Scholar 

  2. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C et al (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81:27–40

    Article  CAS  PubMed  Google Scholar 

  3. Hayashi K (1992) PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl 9:73–79

    Article  CAS  PubMed  Google Scholar 

  4. Krahn M, Bernard R, Pecheux C, Hammouda el H, Eymard B, Lopez de Munain A, Cobo AM, Romero N, Urtizberea A, Leturcq F, Levy N, The Calpain Study Group of the French LGMD Network (2006) Screening of the CAPN3 gene in patients with possible LGMD2A. Clin Genet 69:444–449

    Article  PubMed  Google Scholar 

  5. Saenz A, Leturcq F, Cobo AM, Poza JJ, Ferrer X, Otaegui D, Camano P, Urtasun M, Vilchez J, Gutierrez-Rivas E, Emparanza J, Merlini L, Paisan C, Goicoechea M, Blazquez L, Eymard B, Lochmuller H, Walter M, Bonnemann C, Figarella-Branger D, Kaplan JC, Urtizberea JA, Marti-Masso JF, Lopez de Munain A (2005) LGMD2A: genotype-phenotype correlations based on a large mutational survey on the calpain 3 gene. Brain 128:732–742

    Article  CAS  PubMed  Google Scholar 

  6. Richard I, Roudaut C, Saenz A, Pogue R, Grimbergen JE, Anderson LV, Beley C, Cobo AM, de Diego C, Eymard B, Gallano P, Ginjaar HB, Lasa A, Pollitt C, Topaloglu H, Urtizberea JA, de Visser M, van der Kooi A, Bushby K, Bakker E, Lopez de Munain A, Fardeau M, Beckmann JS (1999) Calpainopathy—a survey of mutations and polymorphisms. Am J Hum Genet 64:1524–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y, Suzuki K (1989) Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem 264:20106–20111

    CAS  PubMed  Google Scholar 

  8. Ma H, Shih M, Hata I, Fukiage C, Azuma M, Shearer TR (2000) Lp85 calpain is an enzymatically active rodent-specific isozyme of lens Lp82. Curr Eye Res 20:183–189

    Article  CAS  PubMed  Google Scholar 

  9. Fougerousse F, Bullen P, Herasse M, Lindsay S, Richard I, Wilson D, Suel L, Durand M, Robson S, Abitbol M, Beckmann JS, Strachan T (2000) Human-mouse differences in the embryonic expression patterns of developmental control genes and disease genes. Hum Mol Genet 9:165–173

    Article  CAS  PubMed  Google Scholar 

  10. Herasse M, Ono Y, Fougerousse F, Kimura E, Stockholm D, Beley C, Montarras D, Pinset C, Sorimachi H, Suzuki K, Beckmann JS, Richard I (1999) Expression and functional characteristics of calpain 3 isoforms generated through tissue-specific transcriptional and posttranscriptional events. Mol Cell Biol 19:4047–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Tullio R, Stifanese R, Salamino F, Pontremoli S, Melloni E (2003) Characterization of a new p94-like calpain form in human lymphocytes. Biochem J 375:689–696

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Human Mutat 15:7–12

    Article  CAS  Google Scholar 

  14. Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155–7714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Kawabata Y, Hata S, Ono Y, Ito Y, Suzuki K, Abe K, Sorimachi H (2003) Newly identified exons encoding novel variants of p94/calpain 3 are expressed ubiquitously and overlap the alpha-glucosidase C gene. FEBS Lett 555:623–630

    Article  CAS  PubMed  Google Scholar 

  17. Ma H, Shih M, Fukiage C, Azuma M, Duncan MK, Reed NA, Richard I, Beckmann JS, Shearer TR (2000) Influence of specific regions in Lp82 calpain on protein stability, activity, and localization within lens. Invest Ophthalmol Vis Sci 41:4232–4239

    CAS  PubMed  Google Scholar 

  18. Diaz BG, Moldoveanu T, Kuiper MJ, Campbell RL, Davies PL (2004) Insertion sequence 1 of muscle-specific calpain, p94, acts as an internal propeptide. J Biol Chem 279:27656–27666

    Article  CAS  PubMed  Google Scholar 

  19. Dehainault C, Michaux D, Pages-Berhouet S, Caux-Moncoutier V, Doz F, Desjardins L, Couturier J, Parent P, Stoppa-Lyonnet D, Gauthier-Villars M, Houdayer C (2007) A deep intronic mutation in the RB1 gene leads to intronic sequence exonisation. Eur J Hum Genet 15:473–477

    Article  CAS  PubMed  Google Scholar 

  20. De Luna N, Freixas A, Gallano P, Caselles L, Rojas-Garcia R, Paradas C, Nogales G, Dominguez-Perles R, Gonzalez-Quereda L, Vilchez JJ, Marquez C, Bautista J, Guerrero A, Salazar JA, Pou A, Illa I, Gallardo E (2007) Dysferlin expression in monocytes: a source of mRNA for mutation analysis. Neuromuscul Dis 17:69–76

    Article  Google Scholar 

  21. Chrobakova T, Hermanova M, Kroupova I, Vondracek P, Marikova T, Mazanec R, Zamecnik J, Stanek J, Havlova M, Fajkusova L (2004) Mutations in Czech LGMD2A patients revealed by analysis of calpain3 mRNA and their phenotypic outcome. Neuromuscul Dis 14:659–665

    Article  Google Scholar 

  22. Stehlikova K, Zaplova E, Sedlackova J, Hermanova M, Vondracek P, Marikova T, Mazanec R, Zamecnik J, Vohanka S, Fajkus J, Fajkusova L (2007) Quantitative analysis of CAPN3 transcripts in LGMD2A patients: involvement of nonsense-mediated mRNA decay. Neuromuscul Dis 17:143–147

    Article  Google Scholar 

  23. Krahn M, Pécheux C, Chapon F, Béroud C, Drouin-Garraud V, Laforet P, Romero NB, Penisson-Besnier I, Bernard R, Urtizberea JA, Leturcq F, Lévy N (2007) Transcriptional explorations of CAPN3 identify novel splicing mutations, a large-sized genomic deletion and evidence for messenger RNA decay. Clin Genet 72:582–592

    Article  CAS  PubMed  Google Scholar 

  24. Shin JH, Kim HS, Lee CH, Kim CM, Park KH, Kim DS (2007) Mutations of CAPN3 in Korean patients with limb-girdle muscular dystrophy. J Korean Med Sci 22:463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krahn M, Bernard R, Pecheux C, Hammouda el H, Eymard B, Lopez de Munain A, Cobo AM, Romero N, Urtizberea A, Leturcq F, Levy N, The Calpain Study Group of the French LGMD Network (2006) Screening of the CAPN3 gene in patients with possible LGMD2A. Clin Genet 69(5):444–449

    Article  PubMed  Google Scholar 

  26. Bateman JF, Freddi S, Nattrass G, Savarirayan R (2003) Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum Mol Genet 12:217–225

    Article  CAS  PubMed  Google Scholar 

  27. Resta N, Susca FC, Di Giacomo MC, Stella A, Bukvic N, Bagnulo R, Simone C, Guanti G (2006) A homozygous frameshift mutation in the ESCO2 gene: evidence of intertissue and interindividual variation in NMD efficiency. J Cell Physiol 209:67–73

    Article  CAS  PubMed  Google Scholar 

  28. Linde L, Boelz S, Nissim-Rafinia M, Oren YS, Wilschanski M, Yaacov Y, Virgilis D, Neu-Yilik G, Kulozik AE, Kerem E, Kerem B (2007) Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 117:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ono Y, Kakinuma K, Torii F, Irie A, Nakagawa K, Labeit S, Abe K, Suzuki K, Sorimachi H (2004) Possible regulation of the conventional calpain system by skeletal muscle-specific calpain, p94/calpain 3. J Biol Chem 279:2761–2771

    Article  CAS  PubMed  Google Scholar 

  30. Krahn M, Lopez de Munain A, Streichenberger N, Bernard R, Pecheux C, Testard H, Pena-Segura JL, Yoldi E, Cabello A, Romero NB, Poza JJ, Bouillot-Eimer S, Ferrer X, Goicoechea M, Garcia-Bragado F, Leturcq F, Urtizberea JA, Levy N (2006) CAPN3 mutations in patients with idiopathic eosinophilic myositis. Ann Neurol 59:905–911

    Article  CAS  PubMed  Google Scholar 

  31. Fanin M, Angelini C (2002) Muscle pathology in dysferlin deficiency. Neuropathol Appl Neurobiol 28:461–470

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients and family members who participated in this study. We are very grateful to Dr. Valcárcel and Dr. Martins de Araujo for their helpful advice and to A. Iribarren, O. Zuriarrain, M. Martínez-Isasi and N. Coll for their technical assistance. We also wish to thank C. Elsden for the editing of the manuscript. This work was supported by the Association Française contre les Myopathies (Ref. 12642), by the Spanish Ministry of Health (FIS PI06/1018) and by the Ilundain Foundation. L. Blázquez is supported by the Department of Education, University and Research of the Basque Government. A. Sáenz and M. Goicoechea are researchers from the Spanish Ministry of Health (FIS) and Ilundain Foundation respectively. D. Otaegui has a contract as a technician from the Spanish Ministry of Health (FIS). All the experiments performed in this work comply with the current Spanish laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Blázquez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Supplementary Material (DOC 33.5 kb)

Fig. 1

Pathological effect of splice-site mutations described at cDNA level. A c.632 + 4A>G mutation causes exon 4 skipping at mRNA level. B c.802–9G>A mutation causes the insertion of the last seven nucleotides of intron 5 in mature mRNA. C In patient 14, CAPN3 mRNA allele, which carries c.1524 + 1G>C mutation, is degraded and therefore p.Arg490Gln mutation, in heterozygosis in DNA, is seen as pseudo-homozygous in cDNA. D c.2185–12_2194del mutation causes the retention of intron 20 at mRNA level. E c.1992 + 1G>T mutation causes the retention of the first 31 nucleotides of intron 17. F In patient 26, the CAPN3 mRNA allele, which carries c.309G>A mutation, is degraded and therefore p.Thr139Ile mutation in exon 3 is seen as pseudo-homozygous. (JPG 308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blázquez, L., Azpitarte, M., Sáenz, A. et al. Characterization of novel CAPN3 isoforms in white blood cells: an alternative approach for limb-girdle muscular dystrophy 2A diagnosis. Neurogenetics 9, 173–182 (2008). https://doi.org/10.1007/s10048-008-0129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-008-0129-1

Keywords

Navigation